
Noname manuscript No.
(will be inserted by the editor)

Influence of developers’ confirmation biases on software
quality: an empirical study

Gül Çalıklı · Ayşe Başar Bener

Received: date / Accepted: date

Abstract People’s thought processes have a significant impact on software quality,
as software is designed, developed and tested by people. Cognitive biases, which are
defined as deviations of human mind from the laws of logic and mathematics, are
likely to cause software defects. However, there is little empirical evidence to date to
substantiate this assertion. In this research, we focus on a specific cognitive bias type
called confirmation bias. Confirmation bias is believed to be one of the factors that
lead to increased software defect density. Due to confirmation bias, developers might
perform unit tests to make their program work. This results in the propagation of
more defects to testing phase and hence probably an increase in software defect den-
sity. In this research, we present a metric scheme to explore the impact of developers’
confirmation bias on software defect density. In order to estimate effectiveness of our
metric scheme in quantification of confirmation bias within the context of software
development, we perform an empirical study which addresses prediction of defec-
tive parts of software. In our empirical study, we applied confirmation bias metrics to
five datasets obtained from two industrial partners which are from Telecomunications
and Enterprize Resource Planning (ERP) domains respectively. Our results provide
empirical evidence that people’s thought processes and cognitive aspects deserve fur-
ther investigation to find out empirical evidence about their effectiveness in software
defect prediction as well as their relation to software quality.

Keywords Human factors · Software psychology · Defect Prediction · Confirmation
bias

G. Çalıklı
Department of Computer Engineering, Boğaziçi University, 34342, Bebek, Istanbul, Turkey
E-mail: gul.calikli@boun.edu.tr

A. B. Bener
Ted Rogers School of Information Technology Management, Ryerson University, M5B 2K3 Toronto,
Canada
E-mail: ayse.bener@ryerson.ca



2 Gül Çalıklı, Ayşe Başar Bener

1 Introduction

Quality of software is often measured by the number of defects in the final product. In
[8] Boehm and Basili indicate that about 40-50% of effort in software projects is spent
in avoidable rework 80% of which is due to 20% of the defects. Therefore, software
testing is crucial for the detection of defects before the software product is released
to the market. However, software testing is the most resource consuming phase of
software development life-cycle, since approximately 50% of a project schedule is
allocated to testing phase [1], [2].

Defect predictors provide guidance to project managers for effective allocation
of resources in testing phase by pointing out defect-prone parts of the software. As
a result, it is possible to increase efficiency of software testing phase as well as de-
livering the software product to market on time. Reported results in software defect
prediction literature suggest that further progress in defect prediction performance
can be achieved by increasing the content of input data that defect predictors learn
rather than using different algorithms or increasing the size of input data [17], [15],
[16].

In software defect prediction, various machine learning algorithms have been em-
ployed by researchers. Munson and Khoshgoftaar [9] construct discriminant models
by using static code metrics as independent data, where multicolinearity among static
code metrics is eliminated by Principle Component Analysis. Bullard et. al. [3] pro-
pose a rule-based classification model for prediction of defects in a large legacy Tele-
comunication system. In [10], Classification and Regression Trees (CART) algorithm
is used to identify fault-prone modules in embedded systems. Neural networks is an-
other machine learning technique used by Khosgoftaar and Szabo [56] to learn defect
predictors. Regression models have also been widely used [11] [12], [13], [14]. The
model consisting of an ensemble of classifiers proposed by Tosun et. al. [7] com-
bines three algorithms which are Naı̈ve Bayes, Neural Networks and Voting Feature
Intervals respectively. In his repeatable set of experiments, Menzies et. al. [15] dis-
covered that Naı̈ve Bayes classifier with a log-filtering preprocessor on the numeric
data, outperforms methods such as OneR and J4.8. Results obtained by Menzies at.
al. are in line with the results of the benchmark study by Lessmann et. al. [17]. In
this benchmark study, Lessmann et. al. also found no significant difference between
performance of Naı̈ve Bayes and more complex machine learning algorithms.

In order to find out whether performance of defect predictors can be increased
by sampling methods due to the unbalanced nature of the defect data, Menzies et. al.
[16] performed a series of experiments. As algorithm, they used Naı̈ve Bayes since
it was useful in their previous experiments [15] as well as J4.8 which was used in
prior under-over sampling experiments [18], [19]. According to the results obtained,
throwing away data (i.e. undersampling) does not degrade the performance of the
learner. For J4.8 algorithm throwing away data improved median performance from
around 40% to 70%, while under-sampling outperformed over-sampling for both J4.8
and Naı̈ve Bayes. These results are consistent with those of Drummond et. al. [18]
and Kamei et. al. [19].

In the literature there are also instances where metrics other than or in addition to
static code attributes have been used for defect prediction. Jiang et. al. [20] compared



Influence of developers’ confirmation biases on software quality: an empirical study 3

predictor performances that were learnt from design metrics, static code features and
both for 13 NASA projects. Design metrics were extracted from requirements docu-
ments with a text miner. More accurate results were obtained by using both design and
static code metrics rather than individual use. The results obtained were consistent
with results of the similar experiments which were previously conducted by Zhao. et.
al. [21] for the analysis of a real time Telecomunication system. Zimmerman and Na-
gappan [22] developed a metric suite which defines dependency of binary files from
a graph theoretic point of view. The authors used these metrics as input to linear and
logistic regression models to predict post-release failures of Windows Server 2003.
Zimmerman and Nagappan report 10% increase in defect prediction performance due
to the inclusion of dependency graphs as input data. Following this research, Nagap-
pan and Ball [23], combined dependency and churn metrics to predict post-release
faults in binary files of Windows Server 2003. The authors conclude that they can
predict post-release failure using regression models at a statistically significant level.
Tosun et. al. [24] used network and churn metrics as well as static code metrics in
order to build defect predictors for different defect categories. According to their re-
sults, churn metrics gave the best result to predict all types of defects. Turhan et. al. in
another study [27] reduced probability of false alarms by supplementing static code
metrics by their Call Graph Based Ranking (CGBR) framework.

The above mentioned research to improve input data content mainly focus on
product attributes and process attributes. However, people’s thought processes have
a significant impact on software defect density, as software is being developed by
people, and tested by people. In this paper, we address a specific aspect of people’s
thought processes, namely confirmation bias, to identify defect prone parts of soft-
ware. In this study, we focus on confirmation bias of developers. Due to confirmation
bias, developers might perform only the tests that make their program work which in
turn leads to an increase in software defect density. Hence, we can state our research
question as follows:

RQ1: How do developers’ confirmation biases influence software quality?

In order to propose a solution to research question RQ1, firstly one needs to an-
swer the following:

RQ2: How can we identify measures of confirmation bias in relation to software
development process?

RQ3: How well measures of confirmation bas do in predicting defect prone parts of
software?

As a solution to research question RQ2, we present a methodology to define and
extract confirmation bias metrics in relation to software development process. We
also investigate effectiveness of these metrics in the prediction of software failure-
proneness, in order to answer our final research question RQ3. For this purpose,
we conduct a benchmark analysis. In this benchmark analysis, we use five datasets
collected from two of our industrial partners in Telecomunications and Enterprize
Resource Planning (ERP) domains respectively. For each dataset, we compare pre-
diction performance of confirmation bias metrics with the prediction performance of



4 Gül Çalıklı, Ayşe Başar Bener

static code metrics and churn metrics respectively as well as all combinations of these
three metric types. Our results show that by using only confirmation bias metrics, we
obtain defect prediction results which are comparable with results of defect predictors
that are learnt from only churn metrics and only static code attributes respectively.

We can summarize the contributions of this work as follows:

1. Definition of confirmation bias within software development/ testing domain.
2. A methodology to define and extract confirmation bias metrics.
3. Collection of static code, confirmation bias and churn metrics from five software

projects. One of these projects belongs to Turkey’s largest Independent Software
Vendor specialized in ERP domain, while the remaining four projects belong to
Turkey’s largest Telecomunication/GSM company.

4. A benchmark study to evaluate effectiveness of confirmation bias metrics in soft-
ware defect prediction compared to static code and churn metrics as well as all
combinations of these three metric types.

The rest of the paper is organized as follows: We mention related work which
is followed by detailed information about confirmation bias in cognitive psychology
literature. In this section, we also make a definition of confirmation bias in relation
to software development process as well as explaining the analogy between Wason’s
experiments and unit testing. We later explain our methodology to define and extract
confirmation bias metrics. This is followed by details about the confirmation bias met-
rics. In the next section, having explained our experimental methodology, we present
our experimental results and address threats to validity. We finally address threats to
validity regarding definition of confirmation bias metrics and conclude after pointing
out possible future directions.

2 Related Work

The notion of cognitive biases was first introduced by Tversky and Kahneman [28].
There are various cognitive bias types such as availability, representativeness, over-
optimism, over-confidence, anchoring and adjustment; and confirmation bias. Al-
though there has been intensive research in the field of cognitive psychology about
cognitive biases, interdisciplinary studies about the effects of cognitive biases in soft-
ware development life-cycle are at an immature level. In this section, we mention
existing research about the effects of some of these cognitive bias types on software
development and effort estimation. This section also includes a survey of people-
related metrics which were used to identify defect-prone parts of software. As far as
we know, our research is the first one which takes into account metrics related to a
cognitive bias type to learn defect predictors.

2.1 Effects of Cognitive Biases on Software Engineering

In [29], Stacy and MacMillian emphasize the fact that thought process of developers
are a fundamental concern in software development. To the best of our knowledge,



Influence of developers’ confirmation biases on software quality: an empirical study 5

Stacy and MacMillian are the two pioneers who recognized the potential effects of
cognitive biases on software engineering. The authors discuss how cognitive biases
might show up in software engineering activities by giving examples from several
contexts. However, this work contains no empirical investigations. The authors put
forward some ideas as possible explanations and as potential areas that require further
research.

Empirical evidence which supports existence of confirmation bias among soft-
ware testers is provided by Teasley et. al. in [30]. In their work, Teasley et. al conduct
laboratory experiments as well as observing software testers in their naturalistic en-
vironment.

Another study which provides empirical evidence about the existence of another
cognitive bias type anchoring and adjustment within the context of software devel-
opment belongs to Parsons and Saunders [31]. Parson and Saunders conduct two ex-
periments, which investigate the existence of anchoring and adjustment in software
artifact reuse. The first experiment they conduct examines the reuse of object classes
in a programming task, whereas their second experiment investigates how anchoring
and adjustment bias affects reuse of software design artifacts. In their second exper-
iment, Saunders and Parsons ask the participants to develop an Entity-Relationship
(E-R) model for an airplane application.

Mair and Shepperd [32] discuss how software engineers’ cognitive biases such
as over-optimism and over-confidence contaminate the results obtained by software
effort predictors making them far from being objective. Mair and Shepperd also em-
phasize that experiments on software developers in realistic settings should be con-
ducted by interdisciplinary teams consisting of cognitive psychologists and computer
scientists in order to discover de-biasing strategies. This work by Mair and Shepperd
is in the form of a preliminary research and it contains no empirical investigation.

On the other hand, Jørgensen et. al empirically investigates some cognitive bias
types within the scope of software development effort estimation. According to em-
pirical findings of Jørgensen [35], increase in the effort spent on risk identification
during software development effort estimations leads to an illusion of control which
in turn leads to more over-optimism and over-confidence. Moreover, as a result of
the cognitive bias type availability, risk scenarios which are more easily recalled are
over-emphasized so that inaccurate effort estimations are made. Jørgensen also em-
pirically investigates how anchoring and adjustment heuristic leads to inaccurate ef-
fort estimates [34]. Jørgensen indicates that reasonable results can be obtained only
if the reference value for the estimates (i.e. the anchor) is the typical effort of tasks of
same category or effort of the closest analogy.

2.2 People Related Metrics in Software Defect Prediction

In the literature, various people-related metrics have been used to build defect predic-
tors, yet these are not directly related to people’s thought processes or other cognitive
aspects.

Nagappan et. al. [63] defined a metric suite to quantify the complexity of organi-
zations consisting of many teams of software professionals working together. The au-



6 Gül Çalıklı, Ayşe Başar Bener

thors built a model to predict failure proneness of Windows Vista. They compared the
performance of this defect predictor with the performance of models that are learnt
using code churn, code complexity, code coverage, pre-release bugs and dependen-
cies respectively. In terms of precision and recall values, their model outperformed
all these mentioned models.

Graves et. al. [36] also used metrics regarding development organization that
worked on a specific code and number of developers who made changes on that code,
as well as churn metrics for prediction of defective modules. According to the results
obtained by the authors, the number of developers who have changed a module did
not improve defect prediction performance. Weyuker et. al. [41] also found that num-
ber of developers is not a major influence to increase defect prediction performance.

On the other hand, Mockus et. al. [37] found that developer experience is es-
sential to predicting failures. In [38], Weyuker et.al. used developer information that
distinguishes developers who are new to a working file or who share responsibility
of that file with other developers, since it is more likely that changes made by such
developers would result in faults. However, Weyuker et. al. detected no significant
contribution of this kind of developer information to defect prediction performance.
Following this research, the authors later analyzed the effectiveness of individual
developer performance on defect prediction performance and no evidence of a signif-
icant improvement in defect prediction performance was found either [39].

Social interaction between developers who have collaborated to the same file dur-
ing same period of time was modeled as social networks to be used in defect predic-
tion by Meneely et. al [40]. The model constructed for an industrial product from
Nortel was able to explain 60% of the variance of failures during the testing phase.
Pinzger et. al. [42] formed a contribution network by combining modules with devel-
opers who contribute to those modules and defined centrality measures to quantify
the number of developers making contribution to a specific module. Empirical analy-
sis of the data from Windows Vista project showed that centrality metrics can predict
software failures up to a significant extend. Bird et. al. [43] formed a network which
is a combination of module dependency and contribution networks to predict fault
prone modules. As a result, they were able to predict fault prone binary files with
greater accuracy than prior methods which use dependency networks [22] or contri-
bution networks [42] in isolation.

3 Confirmation Bias

In cognitive psychology, confirmation bias is defined as the tendency of people to
seek for evidence that could verify their hypotheses rather than seeking for evidence
that could falsify them. The term confirmation bias was first used by Peter Wason in
his rule discovery experiment [44] and later in his selection task experiment [45].

3.1 Wason’s Experiments

In order to form a confirmation bias metric suite, we prepared interactive question
and written question set and based on the outcomes of these questions we evaluated



Influence of developers’ confirmation biases on software quality: an empirical study 7

metric values for each developer. Interactive question is Wason’s Rule discovery Task
itself [44] and written question set is based on Wason’s Selection Task [45]. In the
following subsection, we briefly explain these two experiments of Wason which he
proposed to show the existence of confirmation bias among people.

Wason’s Rule Discovery Task: In this experiment, Wason asked his subjects to dis-
cover a simple rule about triples of numbers [44]. The experimental procedure can be
explained as follows: Initially, subjects are given a record sheet on which the triple
”2, 4, 6” is written. The subjects are told that ”2 4 6” conforms to this rule. In order
to discover the rule, they are asked to write down triples together with the reasons of
their choice on the record sheet. After each instance, the examiner tells whether the
instance conforms to the rule or not. The subject can announce the rule only when
(s)he is highly confident. If the subject cannot discover the rule, (s)he can continue
giving instances together with reasons for his/her choice. This procedure continues
iteratively until either the subject discovers the rule or (s)he wishes to give up. If the
subject cannot discover the rule in 45 minutes, the experimenter aborts the procedure.

Wason designed this experiment in a way such that subjects mostly showed a
tendency to focus on a set of triples that is contained inside the set of all triples
conforming to the correct rule. Due to this fact, discovery of the correct rule was
possible only by following a hypothesis testing strategy. Once the subject sees the
triple ”2 4 6”, a set of hypotheses come to her/his mind. An ideal hypothesis testing
strategy is to start by giving examples which does not refute all hypotheses the subject
has in his/her mind at once. The examples of triples that refute more hypotheses
should be given as the subject becomes more sure about the rule to be discovered.
The hypotheses in mind should be eliminated, modified and created in a strategic
manner, so that subject can come up with a single hypothesis at the end. Once the
subject is sure about what the correct rule is, (s)he may also give additional triple
instances to verify his/her guess.

Wason’s Selection Task: Written question set is based on Wason’s Selection Task
[45]. In the original task, the subject is given four cards, where each card has a letter
on one side and a number on its other side. These four cards are placed on a table
showing respectively D, K, 4, 7. Given the rule: ”Every card that has a D on one side
has a 3 on the other side”, the subject is asked which card(s) must be turned over to
find out whether the rule is true or false.

3.2 Confirmation Bias in Relation to Software Development

Due to confirmation bias, developers might perform only the tests which make their
program work and this leads to an increase in software defect density. On the other
hand, during all levels of software testing, including unit testing, a systematic hy-
pothesis testing procedure should be followed similar to the one followed by a sci-
entist making experiments in his/her laboratory. In general, scientific inferences are
based on the principle of eliminating hypotheses while provisionally accepting the
remaining ones. Therefore, similar to a scientist, a software developer should try test



8 Gül Çalıklı, Ayşe Başar Bener

scenarios starting from ones that are less likely to fail the code and proceeding with
test scenarios which aim the code to fail. In most cases, there are infinitely many test
scenarios which require following a strategy to select the appropriate ones.

Hence, within the context of software development and testing, we extend the
definition of confirmation bias to include one or both of the following: 1) The ten-
dency to verify software code, 2) The incompetency to apply strategies to try to fail
software code.

Wason’s Rule Discovery Task in Relation to Unit Testing: There are similarities be-
tween Wason’s Rule Discovery task and functional (black-box) testing which are
performed by software developers to test functional units of their codes during unit
testing. This similarity is also mentioned by Teasley et. al. [64]. According to the
findings of Wason in his Rule Discovery Task, the subjects have tendency to select
many triples (i.e. test cases) which are consistent with their hypotheses and few tests
which are inconsistent with them. Similarly, program testers may select many test
cases consistent with the program specifications (positive tests) and few which are
inconsistent with them (negative tests). Moreover, the state space of possible test
cases is either infinite or too large to be tested within limited amount of time. Hence,
a strategic approach must be followed which covers both positive and negative test
cases while trying to make the code fail during testing in order to find as much defects
as possible.

Wason’s Selection Task in Relation to Unit Testing: Wason’s selection task measures
the capability of the subject to use logical rules such as modus ponens and modus
tollens as well as his/her tendency to refute the given statement. During unit testing
while covering possible scenarios logical reasoning is required. Moreover, testing
correctness of conditional statements in source code during white box testing also
requires logical reasoning skills.

4 Methodology to Define and Extract Confirmation Bias Metrics

The overall methodology to define and extract confirmation bias metrics is shown
in Figure 1, where thick arrows indicate information flow. Preparation of interactive
question and written question set was performed concurrently with the creation of
the initial metric suite. In order to prepare confirmation bias questions, we made an
extensive survey in cognitive psychology literature. This survey also helped us to
initiate confirmation bias metric suite. There is a mutual information feedback be-
tween preparation of questions and metric suite update processes since definition of
a new metric sometimes required adding new questions into the written question set
which in turn often led to the introduction of more metrics. Having prepared con-
firmation bias questions and a metric suite, interactive question and written ques-
tion set are answered by the participants software professionals. During evaluation
and analysis of the answers of confirmation bias question given by the participants,
new metrics can be introduced, into the metric suite. Statistical analysis and fea-
ture selection techniques help to eliminate metrics which have less significance in



Influence of developers’ confirmation biases on software quality: an empirical study 9

Fig. 1 : Methodology to define confirmation bias metrics and extract confirmation bias metric values.

measurement/quantification of confirmation bias. Our methodology for the defini-
tion of confirmation bias metric suite is an iterative process. Hence this procedure
is repeated for each new group of participants using confirmation bias questions and
metric suite which has been modified at the end of the previous iteration. The extend
of the changes regarding content of the confirmation bias questions and metric suite
were much larger during the early stages of the metric definition process when con-
firmation questions consisting of interactive question and written question set were
administered to pilot participant groups. In this paper, we present the latest version
of the metric suite for which only minor changes in content are likely to occur.

4.1 Preparing Interactive Question and Written Question Set

Interactive question is Wason’s Rule Discovery Task itself, the details of which are
explained in the previous section. Written question set is based on Wason’s Selec-
tion Task and it consists of two parts. The first part contains abstract and thematic
questions, whereas the second part contains thematic questions with software de-
velopment and testing theme. Table 1 give information about the distribution of the
questions.

Abstract questions require pure logical reasoning to be answered correctly. In
our question set, there are 8 abstract questions. Compared to thematic problems, it
is easier to reason with problems which have thematic content, since real life experi-
ence may help to answer such questions correctly [46]. For written question set, we
prepared 7 thematic questions after having made a literature survey covering major
thematic variants of Wason’s original selection task [47], [48], [49], [50],[51], [52],
[53], [54],[55]. In written question set, there is 1 abstract-thematic question. Similar
to an abstract question, an abstract-thematic question can be answered correctly by
pure logical reasoning. Although such questions seem to have a thematic content,
thematic facilitation effect does not take place [46].



10 Gül Çalıklı, Ayşe Başar Bener

Table 1 Distribution of question types in written question set

Question Type # of Questions

Part I
Abstract 7
Abstract+Thematic 1
Thematic 7

Part II
Software Development 9

4.2 Administration of Confirmation Bias Test

In order to collect confirmation bias metrics in a controlled manner, we administered
confirmation bias test, which consist of interactive question and written question set,
under a predefined standard procedure. The environment where confirmation bias test
was administered was isolated from noise and had adequate lighting. Both Turkish
and English versions of the interactive question and written question set were previ-
ously prepared. In this study, participants, who are software developers, took Turkish
version of the questions, since their native language is Turkish. English version of the
questions was also required, as in our previous work some of the participants were
software developers from North America [59]. Participants were informed about the
fact that confirmation bias test results shall not be used in their company’s perfor-
mance evaluations and their identity shall be kept anonymous. The goal was not to
exert pressure on participants which could affect participants’ performance. More-
over, participants were told that there is no time constraint to complete the questions
in order not exert time pressure. After the completion of both booklets, participants
were warned not to inform other software developers and testers in their company
about the content of the questions.

Below we explain the standard procedures which are specific for written question
set and interactive question respectively.

Written Question Set In Wason’s studies related to his Selection Task, participants
were allowed to inspect real packs of cards, before the experimenter secretly selected
four cards from the pack and placed them on a table so that only a single side of
each card is visible. However, most recent studies in this field rely on the description
of the cards, and pictorial representations of cards’ facing sides either on pencil and
paper or on a computer screen. These procedural differences have made insignificant
differences in the obtained results [46].

Since it is possible to administer this part of the confirmation bias test for a group
of participants at once, we preferred to use pen and pencil approach rather than the
traditional approach. Hence we prepared written question set which consists of two
booklets. The first booklet includes abstract, thematic-abstract and thematic ques-
tions, while the second booklet consists of thematic questions with software develop-
ment/testing theme. Each group of participants, corresponding to each data set listed
in Table 6, answered questions in the first and second booklet altogether in a meet-



Influence of developers’ confirmation biases on software quality: an empirical study 11

ing/seminar room. Before starting to read and answer the questions, the participants
were told to fill in the form where personal information such as gender, age, education
and experience in software development and/or testing were asked. This information
was used in our previous research where we investigated factors affecting confir-
mation bias as well as effects of confirmation bias on software developer and tester
performance [59], [60], [61]. Afterwards, first booklet was given to participants so
that they started to answer questions in the first booklet simultaneously.

Interactive Question Each participant answered interactive question in a separate
room and for each participant there was one examiner to guide and give feedback.
Before the whole procedure started, participants were asked whether they gave per-
mission to record their voices during the session. The goal of voice recording was
to catch every detail about the way a participant thinks to discover the correct rule
as well as eliminating ambiguities while interpreting reasons for choice participant
wrote down for each instance they gave while evaluating the question result. Voice
recording was made only if the participant gave us the permission. Before starting,
detailed information was given about the procedure which should be followed to an-
swer the interactive question (i.e. to discover the correct rule).

5 Confirmation Bias Metrics

The metrics in the confirmation bias metric suite are extracted from interactive ques-
tion and the written question set respectively. In this research, our concern is unit
testing performed by developers. We focus on functional and structural testing, since
these are the two testing techniques both of which are used by all developer groups
that took part in this research. As it is also stated by Teasley et. al. in [64], there
is a similarity between Wason’s Rule Discovery Task and functional testing. Since
interactive question is Wason’s Rule Discovery Task itself, hypotheses testing be-
havior the developer exhibits while solving the interactive question has the potential
to give us clues about the strategies employed by the developer to test his/her own
code. On the other hand, metrics extracted from the written test are designed to give
clues about the way a developer performs structural testing on his/her code. Struc-
tural testing focusses on the logic of the program and its internal structure. Therefore
knowledge about first order logics is required as it is also required to solve the ques-
tions in the written question set correctly. In Table 5 confirmation bias metrics used
in this research are listed. Below, we give details about these metrics and explain how
they can inform us about the effectiveness of the unit tests performed by developers.
Since increase in the effectiveness of unit testing leads to a decrease in the number
of defects overlooked by developers, the confirmation bias metrics we have defined
are also related to software defect density. Therefore, they are used to build defect
predictors.



12 Gül Çalıklı, Ayşe Başar Bener

5.1 Interactive Question Metrics

As one of the outcomes of his rule discovery task [44], Wason presents distribution
of the participants with respect to the total number of rule announcements made. We
defined the metric NA to measure total number of rules announced by a participant
throughout the interactive question session. However, the value of NA alone does not
give information about the number of rule announcements it takes the participant to
find the correct rule. Moreover, this metric does not inform us about whether the
participant finds the correct rule or not. As we mentioned previously, according to
the interactive question protocol the participant can abort the session whenever (s)he
wants. In addition to this, when total session time exceeds 45 minutes, the experi-
menter aborts the interactive question session. In order to discriminate these three
different situations we defined the metric INDABORT . For a participant who eventu-
ally finds the correct rule, INDABORT = 0. INDABORT = 1 implies that the participant
gives up the test on his/her own will, whereas INDABORT = 2 if and only if the session
exceeds 45 minutes.

As a performance metric, we defined the metric TI which measures total time du-
ration for the interactive question session. Due to the similarity between unit testing
and interactive question which is Wason’s Rule Discovery Task itself, a developer
who finds the correct rule in a reasonably short time is also very likely perform ef-
fective unit testing. It is very crucial for commercial software products to perform
effective testing at all levels in a reasonably short time while rushing for the next
release. However, metric TI does not contain any information about whether the par-
ticipant finds the correct rule or (s)he gives up the session, or the experimenter aborts
the session. What is more, by referring to only TI , one cannot make a deduction about
the existence of an effective hypotheses testing strategy employed by the participant
while (s)he is solving the interactive question. Therefore, we introduce additional
metrics that are described below in this section. These metrics have been designed
to contain information about developer’s hypotheses testing behavior which in turn
gives clues about the strategy the developer employs while testing his/her own code.
Some of these metrics also include time in their formulation and time is always mea-
sured in minutes.

Eliminative/enumerative index (Indelim/enum) was introduced by Wason to eval-
uate the results of his rule discovery task [44], in order to determine the proportion
of the total number of instances that are incompatible with reasons to those that are
compatible. In [44], Wason concluded that participants, who made immediate correct
rule announcement, had higher Indelim/enum values compared to the rest of the partic-
ipants. Our results were also in line with Wason’s findings. For developers, who took
part in this research, average Indelim/enum value for developers, who made immediate
correct announcement, is 0.75; whereas this value is 2.43 for the rest of the develop-
ers. Kruskal-Wallis test results for the significance of the difference between average
Indelim/enum values is (χ2 = 15.42, p = 8.62E-5). Comparison of average Indelim/enum
value of developers who made immediate correct rule announcement and those who
made incorrect rule announcement(s) is given in Table 2 for each dataset that is used
in this research. Details about datasets are listed in Table 6.



Influence of developers’ confirmation biases on software quality: an empirical study 13

Table 2 Comparison of average Indelim/enum and Fnegative values of developers who made immediate cor-
rect rule announcement with remaining developers for each dataset

Indelim/enum Fnegative

Immediate Incorrect Immediate Incorrect
Dataset Correct Rule Rule Correct Rule Rule

ERP 1.89 0.53 2.50 0.33
Telecom1 2.68 0.86 2.00 0.46
Telecom2 2.45 0.53 2.70 1.07
Telecom3 2.35 0.51 2.61 1.01
Telecom4 2.37 0.61 2.55 1.06

The value of eliminative/enumerative index being less than 1 implies that par-
ticipants are more inclined to use triples of numbers (i.e. test cases) that are com-
patible with their hypotheses. Our participants are developers and as we mentioned
previously there is a similarity between software testing and Wason’s Rule Discovery
Task [64]. Hence developers with Indelim/enum values less than 1 are more likely to
be inclined to select positive test cases to verify their code. Some flaws in a program
such as logical errors can be discovered by positive test cases. However, other flaws
shall not be discovered unless test cases, which aim to fail the code, are also used. As
a result, effective unit testing shall be hindered leading to an increase in the amount
of defects overlooked during unit testing.

Wason also classifies the results he obtained according to the frequency of neg-
ative instances given by the participants (Fnegative). According to the definition by
Wason, negative instances are triples of numbers which are incompatible with the
correct rule to be discovered. Wason found that mean frequency of negative instances
given by the participants who discovered the correct rule at first announcement is sig-
nificantly higher than that of the participants who found the correct rule after an in-
correct rule announcement. Among developers, who took part in this empirical study,
average Fnegative value of 2.31 belongs to developers, who made immediate correct
rule announcement. On the other hand, for developers who made incorrect rule an-
nouncement, this value is equal to 0.81. According to Kruskal-Wallis test, statistical
significance of this difference is χ2 = 10.59, p = 0.0011. The results obtained within
each dataset are inline with this cumulative result as shown in Table 2.

Wason obtained a highly significant correlation between Indelim/enum and Fnegative.
We also obtained a Spearman correlation of 0.70 (p = 0.9193E-5) for developers who
took part in our research. On the other hand, these two are not entirely the same,
since negative instances don’t necessarily imply an eliminative behavior. Negative
instances might on the other hand help to identify the boundaries of the set of all in-
stances which are compatible with the correct rule to be discovered. Similarly, during
software testing some test cases may help to identify missing parts of the software
specifications. Specifications play a crucial role in software testing. The more com-
plete the specifications are, the more likely that the quality of the testing will be high.
For this reason, in addition to Indelim/enum, we also include Fnegative to our confirma-
tion bias metric suite.



14 Gül Çalıklı, Ayşe Başar Bener

While interactive question was presented to the pilot group, we observed that
17.24% of the participants made immediate rule announcements. However announc-
ing consecutive rules without giving any instances in between is not a part of the pro-
tocol which was explained to each participant before that participant started to solve
the interactive question. Immediate rule announcements were also observed among
participants consisting of developers and testers both in this research and previous
ones [59], [60], [61]. Table 3 shows the portion of participants who made immediate
rule announcements among the developer groups which took part in this research.
Immediate rule announcements are indication of participant’s inadequate hypotheses
testing strategies, as a result of which participant cannot come up with a single rule
at the end by eliminating alternative hypotheses in his/her mind. Equivalence par-
titioning is a non-exhaustive functional testing technique which is applied to each
functional unit mostly together with boundary testing. In equivalence partitioning,
for each functional unit, a set of dimensions of input data are identified as stated in
the specifications and for each dimension a set of equivalence classes are identified.
A developer who makes immediate rule announcements while solving the interactive
question, is very likely to fail to identify all dimensions of input data to be tested in
the functional unit testing. Moreover, (s)he will probably fail to properly determine
equivalence classes for each dimension. In order to quantify the extend of immediate
rule announcements we defined two metrics which are immediate rule announcement
frequency (FIR) and average length of immediate rule announcements (avgLIR) re-
spectively. FIR is the frequency of occurrences where each occurrence corresponds to
a series of immediate rule announcements without giving any instances in between.
Number of consecutive rule announcements within each rule announcement series
may change. Moreover, we also need to discriminate participants who make more
consecutive rule announcements within each immediate rule announcement series.
This is due to the fact that increase in the number of consecutive rule announce-
ments implies an increase in the number of alternative hypotheses that the participant
was unable to eliminate. avgLIR is the average number of rule announcements made
within each series of consecutive rule announcements.

As the most interesting qualitative results of his rule discovery experiment, Wa-
son indicates that some participants reformulated or just repeated their rules even after
they were informed about the incorrectness of their rule [44] they had announced. We
also observed such behavior among our participants as shown in Table 3. Therefore,
we thought that rule repetitions which were qualitatively discussed by Wason in [44],
should be quantified. For this purpose, we defined the metric avgFRR which measures
average frequency of rule repetition. We can explain implication of this metric as fol-
lows: A developer, who makes rule repetitions while solving the interactive question,
is likely to perform functional unit tests using input values such that not all equiv-
alence classes are covered. Such behavior is usually in the form of a tendency to
make the code run rather than finding defects. In addition to the rule repetitions, we
observed reason repetitions as it can be seen in Table3. In order to quantify reason
repetitions, we introduced the metric avgFRsR which measures average frequency of
reason repetition. Unlike rule repetitions, reason repetitions may be due to the lack of
strategic hypotheses testing and they do not necessarily imply a tendency to make the



Influence of developers’ confirmation biases on software quality: an empirical study 15

Table 3 Distribution of developers who made immediate rule announcements, rule and reason repetitions
while solving interactive question

Developer Dataset # Immediate Rule Reason Rule
Group # Announcement % Repetition % Repetition %

1 ERP 50.00 % 50.00 % 16.67 %
2 Telecom1 30.00 % 50.00 % 20.00 %
3 Telecom2 6.67 % 33.33 % 20.00 %
4 Telecom3 6.25 % 37.50 % 18.75 %
5 Telecom4 5.88 % 41.18 % 17.64 %

code run during unit testing. Despite this, reason repetitions cause ineffective testing
during which defects are overlooked.

Another metric is the number of instances given per unit time (Instances/Time).
While solving the interactive question, some participants showed a tendency to guess
the correct rule without giving any triple of numbers as instances. As a result, there
were long pauses during which there was no interaction between the participant and
the experimenter. Such participants usually, gave instances only after the experi-
menter reminded them to do so several times during the interactive question ses-
sion. Therefore, the value of the metric Instances/Time for such participants was
low compared to the rest of the participants. Developers having significantly low
Instances/Time metric value are likely to have less tendency to make strategic unit
tests. Instead they have the tendency to consider their code ready for the testing phase,
after having performed unit tests with a couple of randomly selected input data. On
the other hand, high value for the metric Instances/Time does not necessarily imply
the existence of an ideal hypotheses testing strategy employed by the participant to
solve the interactive question. Moreover, a developer having high Instances/Time
metric value as an outcome of the interactive question, does not necessarily follow
a strategy while performing unit tests on his/her code. For instance, more than one
instance may have been given for a reason for choice (i.e. to test an alternative hy-
pothesis). This corresponds to selecting more than one test case from an equivalence
class. On the other hand, the basic assumption of equivalence partitioning is that if the
program functions correctly for one test case selected from an equivalence class, then
it will function correctly for any test case from that equivalence class. Therefore, we
also included the metric UnqReasons/Time into our metric suite. This metric mea-
sures total number of unique reasons stated by a participant for the instances (s)he
gives while solving the interactive question.

Unlike the metric Instances/Time, increase in the value of the metric which mea-
sures total number of rules announced per unit time Rules/Time is not only an in-
dication of the lack of a hypothesis testing strategy to find the correct rule in the
interactive question. A developer having a high Rules/Time value as outcome of the
interactive question has the tendency to deliver his/her code to the testing phase with-
out making adequate unit testing. For such developer, compilation of his/her code
shall be enough. In other words, high Rules/Time is a result of developer’s rush to
solve the interactive question correctly mostly without checking the correctness of
the alternative hypotheses in his/her mind by giving instances. Among the groups of



16 Gül Çalıklı, Ayşe Başar Bener

participants who solved the interactive question, we observed that some participants
repeated or reformulated some of the rules (s)he already had announced. Participants
exhibiting such behavior while solving the interactive question, are the ones who do
not take into account the feedback given by the experimenter. In order to discriminate
these developers from the rest, we included UnqRules/Time which measures unique
rules announced per unit time into our confirmation bias metric suite.

While solving the interactive question, the instance generated by the participant
after the announcement of an incorrect rule can either be compatible or incompat-
ible with the incorrect rule announced and it can be either a negative or a positive
positive instance of the correct rule. nPos+Comp measures total number of positive and
compatible instances announced by a developer. If the value of nPos+Comp for a devel-
oper is greater than zero, then developer has a tendency to avoid test cases which can
help to find defects. nNeg+Comp measures total number of negative and compatible in-
stances. Existence of negative and compatible instances may help to find the correct
rule. Moreover, a developer with a positive nNeg+Comp metric value has a tendency
to select input data from different equivalence classes during functional testing. In
other words such a developer does not stick to a single equivalence class. Positive
nPos+Incomp and/or positive nNeg+Incomp value imply the existence of incompatible in-
stances. Incompatible instances given just after the announcement of an incorrect rule
shows the participant’s tendency to discover the correct rule rather than sticking to
the incorrectly announced ones.

5.2 Written Question Set Metrics

In order to quantify the extend of participant’s logical reasoning skills within the
context of hypotheses testing, we introduced metrics extracted from outcomes of the
written question set into our confirmation bias metric suite as shown in Table 5. SABS
and ST h measure the portion of the correctly answered abstract and thematic ques-
tions respectively. A participant, who has a low SABS and a high ST h metric value,
compensates the lack of his/her logical reasoning skills with the thematic facilitation
affects such as daily life experience or memory queueing. SSW is the ratio of the cor-
rectly answered questions having software development and testing theme to the total
number of such questions. We included SSW into our confirmation bias metric suite
in order to find out whether lack of logical reasoning skills can be compensated by
knowledge in software development and testing.

TT h+ABS is the total time it takes a participant to solve the first part of the written
question set, while TSW measures the time it takes a participant to solve the second
part of the question set consisting of questions with software development/testing
theme.

Among our participants, we observed that majority selected the cards whose vis-
ible faces have symbols or words matching the ones in the rule. Information pro-
cessing model proposed by Johnson-Laird and Wason [65], classifies participant’s
performance on Wason’s Selection Task as ”no insight”, ”partial insight” and ”com-
plete insight” based on the kinds of systematic errors they make. According to the
the results obtained by both Matarasso Roth [66] and Evans and Lynch [67] partic-



Influence of developers’ confirmation biases on software quality: an empirical study 17

Table 4 Distribution of insights within each developer group

Abstract Questions Thematic Questions
Developer Dataset # No Partial Complete No Partial Complete
Group # Insight Insight Insight Insight Insight Insight

1 ERP 26.14% 21.43% 7.14% 7.14% 0.00% 90.43%
2 Telecom1 28.57% 12.86% 21.43% 10.00% 2.86% 77.14%
3 Telecom1 31.14% 4.29% 15.57% 10.29 % 5.43% 74.29%
4 Telecom3 31.43% 4.71% 14.29% 10.43% 5.71% 73.29%
5 Telecom4 31.14% 4.14% 14.29% 9.29% 5.00% 74.00%

ipants performing at the level of ”no insight” focus on cards mentioned in the rule
whose validity is to be tested. Selection of cards by a participant with ”no insight”
might be due to the participants’ tendency to verify the rule or (s)he might just match
the symbols or words on the cards with those mentioned in the rule. On the other
hand, participants performing at the level of ”partial insight” or ”complete insight”
consider what symbols or words occur at the back of each card. In other words, such
participants perform a systematic combinatorial analysis of the cards. The difference
between these two performance levels is that participants having ”partial insight” se-
lect all cards that could either verify or falsify the rule, whereas participants with
”complete insight” select only the cards that have the potential to falsify the rule.
Depending on whether the selection task in the written question set is abstract, the-
matic or thematic-abstract performance of a participant may vary [46]. According
to the findings of experiments in cognitive psychology, participants usually perform
poorly on abstract questions [46],[65]. This finding is also supported by our empirical
results. Table 4 shows that for each project, answers given by the majority of the de-
velopers to abstract questions can be categorized as ”no insight”. On the other hand,
performance of developers on thematic questions is higher as shown in Table 4.

We introduced three metrics in order to determine participant’s performance for
both abstract and thematic question types in the written question set. Confirmation
bias metrics ABSCompleteInsight , ABSPartialInsight and ABSNoInsight measure the num-
ber of abstract questions which are answered with ”complete insight”, ”partial in-
sight” and ”no insight” respectively. In other words, these metrics give us informa-
tion about the number of abstract questions which are answered by selecting cards
having the symbols that match the ones in the rule as well as the number of those
which are answered a systematic combinatorial analysis of the cards. Similar met-
rics are defined to identify participants’ performance on thematic questions which
are T hCompleteInsight , T hPartialInsight and T hNoInsight respectively. In the written ques-
tion set, there is only one thematic-abstract question. Hence, instead of defining three
separate metrics taking continuous values, we defined a single metric T hABSInsight
which can take one of the three categorical values ”Complete Insight”, ”Partial In-
sight” and ”No Insight” respectively.

Although insight metrics we have defined give information about the existence of
a systematic analysis of the cards, distinction between verification, falsification and
matching tendencies are not clear enough. Reich and Ruth [57] proposes an alterna-



18 Gül Çalıklı, Ayşe Başar Bener

tive approach to the assessment of falsification, verification and matching tendencies
in isolation from one another. For this purpose, they ask four questions to their sub-
jects. In each question the symbols on the cards, and those mentioned in the rule
are same. However, the rule whose validity is to be tested is in one of the follow-
ing forms: ”if p, then q”, ”if p, then not-q”, ”if not p, then q” and ”if not p, then
not q”. Reich and Ruth labels these four questions as TypeI, TypeII, TypeIII and
TypeIV questions respectively. Response given to the TypeI and TypeII questions,
help to identify tendencies for falsification and verification respectively. Responses
to TypeIII and TypeIV questions are also indications of the existence of falsification
and verification tendencies respectively. However, responses given these two ques-
tions may also give us clues about the existence of a matching tendency. The metrics
FV MNTypeI , FV MNTypeII , FV MNTypeIII and FV MNT ypeIV , which we defined as a
part of our confirmation bias metric set, take one or two of the categorical values such
as ”Falsifier”, ”Verifier”, ”Matcher” as well as the categorical value ”None”. ”None”
is used to label responses that cannot be categorized under the former three response
types.

6 Empirical Study

6.1 Datasets

In this study, we used datasets from five different projects as shown in Table 6. In
order to learn defect predictors, we took into account only source code files where
development activities can be observed from the outcomes of the version manage-
ment system. Only these active source code files were tested by testing teams, hence
project teams needed guidance about defect prone parts of these files in order to al-
locate their testing resources efficiently, while rushing for the next release. In Table
6 total number of maintained/developed files, file types and defect rate are listed for
each dataset. Defect rate is the ratio of the number of defective files to the number of
active files.

Dataset ERP belongs to a project group that consists of 6 developers who are em-
ployees of the largest ISV (Independent Software Vendor) in Turkey. The software
developed by this project group is an enterprize resource planning (ERP) software.
The snapshot of the software that was retrieved from the version management system
belongs to period of March 2011 and it consists of 3199 java files. The remaining
four datasets belong to the Telecomunications company which is Turkey’s largest
GSM operator. Dataset Telecom1 consists four versions of a software product re-
sponsible for launching new campaigns. There are 545 java files in a single version
on average and modifications are made on average in 206 files per version. The rest of
the datasets belong to projects responsible from billing and charging functionalities.
Among these three projects, the project to which dataset Telecom2 belongs consists
of java and JSP files, and is not as old as the remaining to projects. Hence, modifica-
tion and updates cover all source code files within the project as well as creating new
files. Therefore, dataset Telecom2 includes all source code files of the correspond-
ing project. On the other hand, dataset Telecom3 consists of source code files of the



Influence of developers’ confirmation biases on software quality: an empirical study 19

Table 5 List of confirmation bias metrics

Interactive Test Metrics
Metric Explanation Value Type
NA Number of rule announcements continuous
INDABORT Indicates whether participant aborts interactive question session or not categorical
TI Duration of interactive question session (in minutes) continuous
Indelim/enum Eliminative/enumerative index by Wason continuous
Fnegative Frequency of negative instances continuous
FIR Immediate rule announcement frequency continuous
avgLIR Average length of immediate rule announcements continuous
avgFRsR Average frequency of reason repetition continuous
avgFRR Average frequency of rule repetition continuous
Instances/Time Number of instances given per unit time continuous
UnqReasons/Time Number of unique reasons given per unit time continuous
Rules/Time Number of rules announced per unit time continuous
UnqRules/Time Number of unique rules announced per unit time continuous
nPos+Comp Number of positive and compatible instances continuous
nPos+InComp Number of positive and incompatible instances continuous
nNeg+Comp Number of negative and compatible instances continuous
nNeg+InComp Number of negative and incompatible instances continuous

Written Test Metrics
Metric Explanation Value Type
SAbs Score in abstract questions continuous
ST h Score in thematic questions continuous
SSW Score in the second part of the written question set continuous
TT h+Abs Time it takes to answer the first part of the written question set continuous
TSW Time it takes to answer the second part of the written question set continuous
ABSCompleteInsight Number of abstract questions answered with complete insight continuous
ABSPartialInsight Number of abstract questions answered with partial insight continuous
ABSNoInsight Number of abstract questions answered with no insight continuous
T hCompleteInsight Number of thematic questions answered with complete insight continuous
T hPartialInsight Number of thematic questions answered with partial insight continuous
T hNoInsight Number of thematic questions answered with no insight continuous
T hABSInsight Insight according to the answer given to thematic-abstract question categorical
FV MNTypeI Reich and Ruth’s categorization with respect to Type I question categorical
FV MNTypeII Reich and Ruth’s categorization with respect to Type II question categorical
FV MNTypeIII Reich and Ruth’s categorization with respect to Type III question categorical
FV MNTypeIV Reich and Ruth’s categorization with respect to Type IV question categorical

software package responsible from monitoring collection of revenues. This software
package has been developed and maintained since the inception of the GSM company
in 1994. There are 1092 java and JSP files in a single version of this software package
on average. However, maintenance, development and software testing activities take
place only for 284 files. Finally, dataset Telecom4 is extracted from a project that is
as old as the project to which dataset Telecom3 belongs. This project is a software
package responsible from database transactions and it consists of PL/SQL files. Sim-
ilar to Telecom3, only files which are being maintained and created are taken into
account during defect prediction analysis.

Dataset ERP consists of a single release of the software product, therefore no
merging process was used to learn and test defect prediction models. On the other



20 Gül Çalıklı, Ayşe Başar Bener

Table 6 Properties of datasets

Dataset # of active files Defect rate # of developers

ERP 3199 0.07 6
Telecom1 826 0.11 9
Telecom2 1481 0.03 4
Telecom3 284 0.02 7
Telecom4 63 0.05 17

hand, datasets Telecom1 and Telecom2 are obtained by merging files in four releases
of the software being developed. The remaining datasets Telecom3 and Telecom4
are obtained by merging files which belong to two releases of corresponding soft-
ware products. During the merging process, file entries with identical file names are
assumed to be different files if and only if corresponding static code metrics are dif-
ferent (i.e. that file has been modified). Otherwise, such a file is included to the list
only once.

6.2 Metric Extraction Process

We performed defect prediction analysis at file granularity level, defect data was not
available at method granularity level. In order to extract static code metrics at file
granularity level, we used Prest tool [58]. The list of the static code metrics which are
used in this research are given in Table 7.

In order to extract churn metrics, we parsed the log files which are obtained from
version control systems. Table 8 consists of the list of churn metrics we used as input
data to learn defect predictors. Log file for the first dataset contains file commit ac-
tivities starting from the beginning of July 2007 till the end of February 2011. On the
other hand, log file for the second dataset covers file commit activities starting from
the beginning of September 2001 till the end of December 2009. Finally, a single log
file was retrieved for the third, fourth and fifth datasets covering commit activities
starting from the beginning of December 2007 till the end of July 2011. We evaluated
outcomes of the interactive question and written question set to extract confirmation
bias metrics. Details about the confirmation bias metric suite used to learn defect
predictors are briefly explained in Section 4. In order to calculate confirmation bias
metrics corresponding to each file, we consolidated confirmation bias metrics from
individual developers to developer groups. For each file in each version, the devel-
opers who created and/or modified that file before the code freeze date (i.e. dates
when development phase for that release is over and testing phase starts) are con-
sidered to be responsible from any defects found in that file. This is due to the fact
that some previously introduced defects can be overlooked during testing phase of
earlier versions resulting in the propagation of defects. For each file in each version,
while examining file commit information retrieved from version control systems, we
took into account code freeze dates. As a result, we obtained a group of developers
responsible from that file.



Influence of developers’ confirmation biases on software quality: an empirical study 21

As shown in Table 5, some confirmation bias metrics take continuous values while
some take categorical values. For each confirmation bias metric, which take contin-
uous values, we applied three different operators to calculate minimum, maximum
and average of the metric values of developers who contributed to the same source
file. Results are assigned to be the source file’s corresponding feature. Assuming that,
Adi represents the ith confirmation bias metric value of dth developer, d ∈ G j means
that dth developer is among the group of developers who created and/or modified jth

source file, and finally, Sop
ji represents the resulting ith confirmation bias metric value

of jth source file when operator op is applied. op can be one of the operators min
, max or avg which are used to find minimum, maximum and average values of the
ith confirmation bias metric respectively. We can formulize the definition for the min,
max and avg operators as follows:

Smax
ji = max(Adi|∀d ∈ G j) (1)

Smin
ji = min(Adi|∀d ∈ G j) (2)

Savg
ji = ∑

d
(Adi|∀d ∈ G j)/∑

d
(1|∀d ∈ G j) (3)

We follow a different procedure while consolidating categorical confirmation bias
metrics of each developer d ∈ G j to find the corresponding metric value for the group
of developers who created and/or modified jth source file. Assume that C j

di is the
value of the ith categorical confirmation bias metric of developer d in group G j and
it can take one of the values c1, ...,cn. Then, for each ck, where k = 1, ...,n, we can
calculate the portion of developers who created and/or modified jth source file such
that value of the ith categorical confirmation bias metric is equal to ck, as follows:

Sck
ji = ∑

d
(1|∀C j

di = ck)/∑
d
(1|∀d ∈ G j) (4)

Hence, consolidating categorical metrics which can take one of the n values of
c1, ...,cn for each developer d ∈ G j, results in the formation of n metrics for the jth
source file.

6.3 Defect Matching

All datasets except for the first one were obtained from two project groups within
the large scale Telecomunication company. As mentioned previously, first dataset be-
longs to an ERP software project developed by the ISV company. In order to match
defects for the first data-set, we had to learn about the work-flow followed by the ISV
during their software development life-cycle. The company uses an issue manage-
ment system. Each issue is stored in this system with a unique issue code and it can
be a new feature to be added to the software being developed, a regular project item
or a defect that needs to be fixed. We managed to match issue items that were labeled
as defect with source code files. According to the company’s software development



22 Gül Çalıklı, Ayşe Başar Bener

Table 7 List of static code metrics used in experiments

Attribute Description

McCabe Metrics

Cyclomatic Complexity v(G) number of linearly independent paths
Cyclomatic Density vd(G) the ratio of the filess cyclomatic complexity to its length
Decision Density dd(G) condition/decision
Essential Complexity ev(G) the degree to which a file contains unstructured constructs
Essential Density ed(G) (ev(G)−1)/(v(G)−1)
Maintenance Severity ev(G)/v(G)

Lines Of Code Metrics

Unique Operands Count n1
Unique Operators Count n2
Total Operands Count N1
Total Operators Count N2
Lines Of Code (LOC) source lines of code
Branch Count number of branches
Conditional Count number of conditionals
Decision Count number of decision points

Halstead Metrics

Level (L) (2/n1)/(n2/N2)
Difficulty (D) 1/L
Length (N) N1 +N2
Volume (V) N ∗ log(n)
Programming Effort (E) D∗V
Programming Time (T) E/18

Table 8 List of churn metrics used in experiments

Attribute Description

commits number of commits made for a file
committers number of committers who committed a file
commitsLast number of commits made for a file since last release
committersLast number of developers who committed a file since last release
rmlLast number of removed lines from a file since last release
alLast number of added lines to a file since last release
rml number of removed lines from a file
al number of added lines to a file
topDevPercent percentage of top developers who committed a file

policy, developers must write the corresponding unique issue code as a comment be-
fore they commit file(s) to the version control system. Therefore, it was possible to
match the file committed to the version management system with the corresponding
issue item in the issue management system. Figure 2 shows the methodology we fol-
lowed to extract the list of defective files. The company provided us with the issue
list extracted from the issue management system. We formed a ”final issue list” by



Influence of developers’ confirmation biases on software quality: an empirical study 23

Fig. 2 Defect matching procedure of a file for the last dataset

taking into account only issue entries where request type is defect and issue status
is different than canceled. An issue of request type defect and status canceled corre-
sponds to defects whose existence could not be verified. They are mostly due to the
factors related to the testing environment of the tester and thus they do not affect the
customer. We mined the commit log file obtained from the version control system to
get a commit history file where format of each commit log entry is in the form as
shown in Figure 2. Finally, for each issue in our final issue list we found names of
source files in commit history file and marked those files as defective.

Second dataset belongs to the project group which is among the project groups
with whom we have been doing a collaborative research for a couple of years [?].
Hence, this project group already has an existing infrastructure to list source files
where bugs are detected during testing phase for each release of the software product.
However, this was the first time we collaborated with the company’s second project
group to which third, fourth and fifth datasets belong. This project group provided us
with a list of file commit activities which took place to fix defects. We were informed
about the fact that all software products of the second project group are released
to the market at the same time labeled with a single release number. We were also
given release calendar which contains code freeze and production release dates of
each release in addition to the information about dates when a particular defect was
detected and/or fixed. We took into account the fact that a file belongs to a specific
release if and only if the date when that defect is detected and/or fixed, is later than
code freeze date and earlier than production release date of that release. As a result,
we were able to match each file with a specific release number, in addition to labeling
defective files for each release.



24 Gül Çalıklı, Ayşe Başar Bener

6.4 Construction of the Prediction Model

In this study, we used Naı̈ve Bayes algorithm, since it combines signals coming from
different attributes [15]. In software defect prediction studies, it is also empirically
shown that performance of Naı̈ve Bayes is amongst the top algorithms [17]. As shown
in Table 6 datasets are imbalanced. In other words, number of defective files is far less
than number of defect-free files. Therefore, we use under-sampling method that is the
most suitable sampling method for our datasets [16]. In order to overcome ordering
effects we shuffled data 10 times and 10-fold cross validation is used for each ordering
configuration of input data. In other words, for each ordering configuration we create
10 stratified bins: 9 of these 10 bins are used as training sets while the last one is used
as the test set [62]. As a result, during each experiment Naı̈ve Bayesalgorithm with
under-sampling is executed 10*10=100 times, for each dataset.

6.5 Performance Measures

In order to evaluate the performance of the defect predictors built by using different
metric suite combinations, we used the well-known performance measures which are
probability of detection, false-alarm rate and balance respectively [15].

Probability of Detection (pd): Pd measures how good a predictors is in finding de-
fective modules, where modules can be files, methods or packages depending on the
granularity level. In the ideal case, we expect a predictor to catch all defective mod-
ules which implies that pd is equal to 1.

Probability of False Alarms (p f ): P f measures false alarm rates, when predictor
classifies defect-free modules as defective. In the ideal case, we expect a predictor to
classify none of the defect-free modules as defective. In other words, the value of p f
is equal to 0.

Balance (bal): In practice, the ideal case where a defect predictor has high proba-
bility of detecting defective modules and low probability of false alarm is very rare.
Therefore, we try to balance between pd and p f values. The notion of balance is
formulized to be the Euclidean distance from the sweet spot (pd = 1 and p f = 0) nor-
malized by the maximum possible distance to this spot. It is desirable that predictor
performance is close to the sweet spot as much as possible.

bal = 1−
√
(1− pd)2 +(0− p f )2

√
2

(5)

Pd and p f values are calculated using Confusion Matrix that is given in Table 9.
In the confusion matrix, T P is the number of correctly classified defective modules,
FP is the number of non defective modules that are classified to be defective, FN
is the number of defective modules that are classified to be non-defective and finally
TN is the number of correctly classified non-defective modules. Formulations for pd
and p f in terms of confusion matrix values is given below:



Influence of developers’ confirmation biases on software quality: an empirical study 25

pd = T P/(T P+FN) (6)

p f = FP/(FP+T N) (7)

Table 9 Confusion matrix TP:True Positives, FN:False Negatives, FP:False Positives, TN:True Negatives

Predicted
Actual Case Defected Not-defected

Defected TP FN
Not-defected FP TN

6.6 Results of the Empirical Study

In this section we discuss performance results of the defect predictors which are learnt
using all seven combinations of static code, confirmation bias and churn metrics for
the datasets ERP, Telecom1, Telecom2, Telecom3 and Telecom4 respectively. Pd, p f
and balance values, which are listed in Tables 9-13, are average performance values
of these defect predictors.

Performance results for the dataset ERP are summarized in Table 10. Probabil-
ity of detection (pd) of the defect predictor which is built using only confirmation
bias metrics is higher than pd value of the predictor which is built using only static
code metrics. According to the results of the Kruskal-Wallis test, the statistical signif-
icance of this difference is χ2 = 52.84, p = 3.62E-8. However, there is no statistically
significant difference between false alarm rates (χ2 = 0.36, p = 0.55) or between
balance values (χ2 = 2.84, p = 0.092). On the other hand, defect prediction model
that is learnt using only confirmation bias metrics has lower false alarm rates (p f ) and
higher balance values (bal), when compared to the model that take only churn metrics
as input. Kruskal-Wallis test results indicating the statistically significant difference
in p f values is χ2 = 62.70, p = 0.0060; whereas the results for the difference in bal
values is χ2 = 15.29, p = 9.23E-5. When both static code and churn metrics are used,
no statistically significant difference is observed between the average balance value
of the resulting defect predictor and the balance value of the predictor built using only
confirmation bias metrics (χ2 = 0.85, p = 0.3563). Using both static code and con-
firmation bias metrics leads to a significantly higher balance value compared to the
balance value obtained from the individual usage of static code metrics (χ2 = 27.26,
p = 1.78E-7). Supplementing churn metrics with confirmation bias metrics to learn
defect predictors also resulted in in an improvement in defect prediction performance.
Average balance value of the defect predictor which is constructed using only con-
firmation bias metrics is 0.66 and this value increases to 0.69 as a result of the in-
clusion of confirmation bias metrics. The difference between these two prediction
performance values is significantly different as indicated by the Kruskal-Wallis test,



26 Gül Çalıklı, Ayşe Başar Bener

χ2 = 4.17, p = 0.0412. However, using confirmation bias metrics in addition to static
code and churn metrics did not result in a significant difference in defect prediction
performance compared to using both static code and churn metrics (χ2 = 0.04, p =
0.8468).

Table 10 Experiment results for dataset ERP

Metric Types
Confirmation Bias Static Code Churn pd pf balance

- + - 0.72 0.29 0.69
+ - - 0.91 0.31 0.74
- - + 0.81 0.38 0.66
+ + - 0.93 0.30 0.76
- + + 0.71 0.15 0.74
+ - + 0.77 0.27 0.69
+ + + 0.93 0.32 0.74

Defect prediction performance results obtained for the dataset Telecom1 is in-
line with the results obtained for dataset ERP. As it can be seen from Table 11, in-
dividual usage of confirmation bias metrics leads to defect prediction performance
(balance = 0.62) which is higher than the performance obtained by individual usage
of static code metrics (balance = 0.58) and churn metrics (balance = 0.55). Ac-
cording to the Kruskal-Wallis test, the statistical significance of these differences are
(χ2 = 21.35, p = 3.82E-6) and (χ2 = 54.42, p = 1.62E-8) respectively. There is no
significant difference between the balance value of the defect predictor that is learnt
using both static code and churn metrics and the balance value that is obtained by
using only confirmation bias metrics (χ2 = 0.36, p = 0.55). Defect prediction per-
formance result obtained for this dataset by using both static code and confirmation
bias metrics is also significantly higher than the prediction performance results (i.e.
balance values) obtained from the individual usage of static code (χ2 = 127.13, p =
1.74E-29) and confirmation bias metrics respectively (χ2 = 28.01, p = 1.21E-2). In-
troduction of churn metrics in addition to confirmation bias metrics does not lead to a
significant improvement in defect prediction performance. The Spearman correlation
between churn metric and 15.67% of confirmation bias metrics is higher than or equal
to 0.50. The correlation between 6.72% of confirmation bias metrics with static code
metrics is greater than or equal to 0.50. The highest Spearman correlation between
churn and confirmation bias metrics is 0.58, p = 1.21E-75; whereas the correspond-
ing value between static code and confirmation bias metrics is −0.53, p = 7.90E-62.
Using static code, confirmation bias and churn metrics altogether results in an av-
erage balance value that is far better than the average balance values obtained from
individual usage of these three metric types. Moreover, the resulting defect predictor
outperforms the defect predictor which is learnt from static code and churn metrics as
well as exceeding performance of the prediction model which is learnt from confir-
mation bias and churn metrics. However, the highest defect prediction performance
is obtained by using static code and confirmation bias metrics.



Influence of developers’ confirmation biases on software quality: an empirical study 27

Table 11 Experiment results for dataset Telecom1

Metric Types
Confirmation Bias Static Code Churn pd pf balance

- + - 0.60 0.41 0.58
+ - - 0.66 0.38 0.62
- - + 0.49 0.30 0.55
+ + - 0.67 0.33 0.67
- + + 0.57 0.32 0.61
+ - + 0.60 0.26 0.62
+ + + 0.62 0.28 0.66

Unlike the results obtained for the datasets ERP and Telecom1, for dataset Tele-
com2 individual usage of confirmation bias metrics resulted in average defect predic-
tion performance (balance = 0.61) which is lower than those of the defect predictors
which are learnt by individual usage of static code (balance = 0.63) According to
Kruskal-Wallis test the difference is significant: χ2 = 11.71, p = 0.0006. However,
no significant difference is detected between defect prediction performance value
obtained by using only churn metrics and the performance value obtained by using
only confirmation bias metrics (χ2 = 1.4, p = 0.2368). Moreover, the defect predic-
tion model that is learnt by using both static code and churn metrics outperformed
(balance = 0.68) all three prediction models which are learnt from the individual use
of static code, confirmation bias and churn metrics respectively (χ2 = 110.48, p =
7.69E-26). Using both static code and confirmation bias metrics also led to higher
average defect prediction performance compared to the performance results obtained
from individual usage of static code metrics (χ2 = 21.97, p = 2.77E-6). However,
using confirmation bias metrics in addition to churn metrics gave lower defect pre-
diction performance result compared to the performance result obtained by using
only churn metrics (χ2 = 34.83, p =3.6E-9). This is due to the high correlation be-
tween churn and confirmation bias metrics. The Spearman correlation between churn
metrics and 56.72% of confirmation bias metrics is higher than or equal to 0.70. The
Spearman correlation between churn metrics 23.12% of confirmation bias metrics
is higher than or equal to 0.85. Moreover, maximum Spearman correlation value is
0.94, p = 0. In contrast, the highest Spearman correlation value between static code
and confirmation bias metrics is 0,37, p = 2.81E-49. Therefore, defect prediction
performance improves significantly by supplementing static code metrics with con-
firmation bias metrics, compared to the performance values obtained by using static
code and confirmation bias metrics separately.

Experiment results for dataset Telecom3 are shown in Table 13. Using only con-
firmation bias metrics results in a better defect prediction performance rather than
using only churn metrics (χ2 = 9.2, p = 0.0024). On the other hand, improved per-
formance results are obtained by individual usage of static code metrics compared to
the results obtained from individual usage of confirmation bias metrics (χ2 = 13.31,
p = 0.0003). Supplementing static code metrics with confirmation bias metrics leads
to a defect prediction performance which is significantly lower than the performance
obtained by using only static code metrics (χ2 = 6.13, p = 0.0133). This is due to



28 Gül Çalıklı, Ayşe Başar Bener

Table 12 Experiment results for dataset Telecom2

Metric Types
Confirmation Bias Static Code Churn pd pf balance

- + - 0.63 0.33 0.63
+ - - 0.60 0.35 0.61
- - + 0.70 0.32 0.64
+ + - 0.69 0.29 0.69
- + + 0.68 0.26 0.68
+ - + 0.64 0.35 0.62
+ + + 0.70 0.32 0.67

the existence of correlation between confirmation bias metrics and static code met-
rics. Spearman correlation between 17.91% of confirmation bias metrics and static
code metrics is greater than or equal to 0.45. Maximum estimated Spearman corre-
lation is 0.50, p = 1.49E-19, whereas the correlation between cyclomatic complexity
and churn metric rml (i.e. total number of removed lines) is ρ = 0.67, p = 0.0054.
The correlation between Halstead length and churn metric al (i.e. total number of
added lines) is ρ = 0.85, p = 0.0231. As a result of this, there is an improvement in
prediction performance when churn metrics are used with static code metrics. How-
ever, the obtained performance is not higher than the performance of the prediction
model which is built using only static code metrics. Similarly, Spearman correlation
between 26.87% of confirmation bias metrics and churn metrics is higher than or
equal to 0.45. Maximum Spearman correlation is ρ = 0.60, p = 0.0077. Hence, sup-
plementing static code metrics with confirmation bias metrics leads to a degradation
in prediction performance. Finally, as a result of the correlation among static code,
confirmation bias and churn metrics , when metrics from all three metric types are
used together to learn a defect prediction model, a degradation in defect prediction
performance is observed.

Table 13 Experiment results for dataset Telecom3

Metric Types
Confirmation Bias Static Code Churn pd pf balance

- + - 0.83 0.12 0.81
+ - - 0.90 0.23 0.78
- - + 0.75 0.24 0.67
+ + - 0.87 0.20 0.78
- + + 0.85 0.14 0.81
+ - + 0.87 0.24 0.76
+ + + 0.87 0.25 0.75

Table 14 summarizes experiment results for dataset Telecom4. The defect predic-
tor which is built by using only static code metrics outperforms the prediction model
which is built by using only confirmation bias metrics (χ2 = 13.31, p = 0.0003). The
performance of the latter defect prediction model is also outperformed by the model
which is built by using only churn metrics (χ2 = 9.2, p = 0.0024). Both of these



Influence of developers’ confirmation biases on software quality: an empirical study 29

results are inline with the corresponding results of dataset Telecom2. Supplement-
ing static code metrics with confirmation bias metrics does leads to a degradation in
defect prediction performance (χ2 = 18.43, p = 1.76E-5). Spearman correlation be-
tween 11.19 % of confirmation bias metrics and static code metrics is higher than or
equal to 0.45, while average Spearman correlation is 0.32. On the other hand, sup-
plementing churn metrics with confirmation bias metrics does not cause a significant
improvement in defect prediction performance (χ2 = 0.37, p =0.544). The Spear-
man correlation between 18.66 % of confirmation bias metrics and churn metrics is
greater than or equal to 0.45, while the average Spearman correlation is 0.40. For
similar reasons, introduction of confirmation bias metrics to the metric set of static
code and churn metrics does not lead to a statistically significant improvement in
defect prediction performance (χ2 = 0.11, p = 0.7455).

Table 14 Experiment results for dataset Telecom4

Metric Types
Confirmation Bias Static Code Churn pd pf balance

- + - 0.91 0.08 0.88
+ - - 0.93 0.15 0.85
- - + 0.90 0.11 0.86
+ + - 0.93 0.21 0.81
- + + 0.83 0.04 0.85
+ - + 0.94 0.11 0.88
+ + + 0.94 0.10 0.89

We can summarize experiment results for all five datasets as follows:

– Performance of defect prediction models built by using only confirmation bias
metrics is comparable with performance values obtained by individual usage of
static code metrics and churn metrics.

– Any combination of static code, churn and confirmation bias metrics may not
lead to an increase in defect prediction performance. This is due to the fact that
combination of metrics may not correspond to an increase in information content
as a result of the high correlation between any two of the static code, confirmation
bias and churn metrics.

6.7 Threats to Validity of Empirical Study

We consider three major threats to the validity of our experiments: construct, internal,
external. To avoid the construct validity threats in terms of measurement artifacts,
we used three popular performance measures in software defect prediction research:
probability of detection (pd), probability of false alarm rates (pf) and balance values
(bal). In order to avoid internal validity threats, we shuffled data 10 times and 10-fold
cross validation is used for each ordering configuration of the input data to overcome
ordering effects. Moreover, during under-sampling we shuffled each portion of the
dataset, which is used to train Naı̈ve Bayes algorithm, 10 times. As a result, during



30 Gül Çalıklı, Ayşe Başar Bener

each experiment Naı̈ve Bayes algorithm with under-sampling is executed 100 times,
for each dataset.

In order to externally validate our results, we used datasets from 5 developer
groups. 4 datasets belong to a Telecomunication company, while 1 dataset belongs
to an ISV specialized in Enterprize Resource Planning (ERP) domain. Hence, our
datasets cover two different software development domains. Moreover, we were able
to collect datasets from two different project groups within Telecomunications com-
pany. One project group develops software which is responsible from launching GSM
tariff campaigns to company’s customers. Dataset Telecom1 has been extracted from
this software and it mainly consists of user interfaces. Remaining projects mainly
consist of database transactions and there is no direct interaction with the customer
via user interfaces.

For statistical validity, we used Kruskal-Wallis test to interpret our experimental
results. Kruskal-Wallis test is an alternative to single factor ANOVA test, which uses
data from independent measures design. However, ANOVA assumes that data is nor-
mally distributed. On the other hand, Kruskal-Wallis test only requires that data can
be rank ordered. Since our data was not normally distributed, it was more appropriate
to use Kruskal-Wallis test.

7 Threats to Validity for Definition and Extraction of Confirmation Bias
Metrics

In order to avoid mono-method bias, which is one of the threats to construct validity,
we used more than a single version of a confirmation bias measure. In other words,
we defined a set of confirmation bias metrics. In order to form our confirmation bias
metric set, we made an extensive survey in cognitive psychology literature cover-
ing significant studies which have been conducted since the first introduction of the
term ”confirmation bias” by Wason in 1960 [44]. Moreover, we made a definition
of confirmation bias in relation to software development life cycle. Since our metric
definition and extraction methodology is iterative, we were able to improve contents
of our metric set through pilot study and datasets collected during our previous re-
lated research [59], [60], [61]. As a result, we were able to demonstrate that multiple
measures of key constructs we use behave as we theoretically expect them to.

Another threat to construct validity is interaction of different treatments. Before
administration of confirmation bias test to groups of participants, we ensured that
none of the participants were involved simultaneously in several other programs de-
signed to have similar effects.

Evaluation apprehension is a social threat to construct validity. Many people are
anxious about being evaluated. Moreover, some people are even phobic about test-
ing and measurement situations. In order to avoid participants’ poor performance
due to their apprehension and not to exert psychological pressure on them, before
solving both written question set and interactive question, participants were informed
about the fact that the questions they are about to solve do not aim to measure IQ
or any related capability. Participants were also told that results shall not be used
in their company’s performance evaluations and their identity shall be kept anony-



Influence of developers’ confirmation biases on software quality: an empirical study 31

mous. Moreover, participants were told that there is no time constraint to complete
the questions, although some of our metrics are requires measurement of time it takes
to answer questions.

Another social threat to construct validity is the expectancies of the researcher.
There are many ways a researcher can bias the results of a study. Hence, the out-
comes of both written question set and interactive question were evaluated by two
researchers independently, one of the researchers not actively being involved in the
study. She was given a tutorial about how to evaluate the confirmation bias metrics
from the outcomes of the written question set and interactive question. However, in
order not to induce a bias she was not told about what the desired answers to the ques-
tions are. The inter-rater reliability was found to be high, for evaluation of each confir-
mation bias metric. Average value for Cohen’s kappa was 0.92. During administration
of the confirmation bias test, explanations made to the participants before they started
solving the questions did not include any clue about ideal responses. Moreover, while
participants were solving interactive question an independent researcher attended the
session in order to observe whether the researcher in charge affects participants’ re-
sponse or not through his/her gestures or facial expressions. Dialogues, which took
place during solution of the interactive question, were also recorded. These record-
ings were later examined to find out whether researcher in charge gives any clues to
the participant about the expected result. Parts of the datasets, which were found to
be affected by the expectancies of the researcher, were excluded from the empirical
investigation.

In order to avoid internal threats to validity, for all project groups we selected
test dates, when workload of developers are not intense. Within any of the groups,
there was no event in between the confirmation bias tests that can affect subjects’
performance. Members of the developer group corresponding to the first dataset took
confirmation bias test, which consists of written question set and interactive question,
within a week. Remaining developer groups took the confirmation bias test in a single
day. As a result, within a project group for each member we managed to create similar
conditions while administering confirmation bias test. If one group member were
tested when work load and time pressure were intense, whereas another member of
the same group were tested under much more suitable and relaxed conditions, then
our methodology would not have been reliable. Another attempt to avoid internal
validity was to administer confirmation bias test in environments, which are isolated
from distraction factors such as noise.

Finally, to avoid external validity we tried to collect data from two different com-
panies specialized in two different domains. We also selected different projects within
a single company. In the short run, our goal is to expand our dataset to contain data
from companies, which are located in different countries, specialized in different do-
mains and practicing various development methodologies through a web based appli-
cation.



32 Gül Çalıklı, Ayşe Başar Bener

8 Conclusion and Future Work

Our main goal in this research is to investigate people’s thought processes on soft-
ware quality. Since people’s thought processes cover a wide range of aspects, we
have focussed on confirmation bias which is believed to be one of the factors that
lead to increased software defect density. In this paper, we defined a metric scheme
to quantify confirmation bias within the context of software development and testing.
In order to investigate how well our metric scheme identifies the effect of developers’
confirmation bias on software quality, in our empirical study, we used confirmation
bias metrics as input to defect prediction models which we have investigated exten-
sively during our past research [7], [26], [71], [72], [73].

In our empirical study, we used five datasets obtained from two industrial part-
ners which are from telecommunications and ERP domain respectively. We have
compared predictors built using confirmation bias metrics with predictors built us-
ing static code and churn metrics. Static code metrics we used in this research in-
clude Lines of Code (LOC), Halstead [69] and McCabe [68] metrics. In other words,
we have covered the set of all major metrics which can be extracted from source
code regarding code complexity based on program flow and readability of the code.
Similarly, the churn metric set, which we have employed in our analysis, contains
extensive information about the changes in source code during the implementation
phase. We extracted significant portion of information regarding code change history
from version management systems.

On the other hand, confirmation bias metrics represent only a single aspect about
people’s thought processes. Despite this, according to our empirical findings using
only confirmation bias metrics to learn defect predictors yields comparable perfor-
mance results. Moreover, the phenomena of cognitive biases, which is only one di-
mension regarding people’s thought processes, comprise other bias types such as rep-
resentativeness, availability, adjustment and anchoring in addition to confirmation
bias. In cognitive psychology, the causes of biases have been extensively investigated
in various domains over the past three decades since the introduction of the con-
cept of bias by Kahneman and Tversky [28]. In addition to cognitive biases, concepts
widely studied in cognitive science such as attention, memory, reasoning, motivation,
social cognition are also among the cognitive aspects which require special attention.
Hence, there is extensive amount of findings in the field of cognitive psychology
which can be employed to form a metric suite covering developers’ cognitive aspects
which have significant effect on software defect density, hence on software quality.

We are aware of the fact that our research is empirical and as stated by Popper,
we cannot verify a theory with limited number of empirical findings, yet falsify it
[70]. Hence, we need to be careful while generalizing our experimental results in
order not to be subject to confirmation bias we have been discussing in this paper.
However, our empirical findings suggest that the effects of cognitive aspects and peo-
ple’s thought processes on software quality deserves to be investigated. Moreover,
obtaining comparable performance results in software defect prediction by confirma-
tion bias metrics implies that further investigation of people’s thought processes may
help us to overcome the ceiling effect in defect prediction performance.



Influence of developers’ confirmation biases on software quality: an empirical study 33

The objective of this research in the long run is to help software development
managers make specific resource allocation decisions by considering metrics related
to people’s thought processes. Such a metric scheme will help managers to determine
the right person to test the defective parts of the software. As a result, guidance of
metrics related to people’s thought processes may decrease the uncertainty in Human
Resource (HR) related decisions up to a significant extent.

As future work, we aim to collect data from larger software development groups
from different companies located in different countries. Collection of data from dif-
ferent contexts shall be possible once we complete implementation of our web based
software product. This software will help us to improve our metric suite to cover
other relevant cognitive aspects that are briefly mentioned above. Since our software
has been designed to be a decision support tool, it shall also be able to analyze the
metrics and make recommendations to software professionals.

Acknowledgements We would like to thank Turkcell A. Ş. and; Turgay Ayta ç and Ayhan Inal from Logo
Business Solutions for their support in sharing data.

References

1. Harrold, M., Testing: a roadmap. Proceedings of the Conference on the Future of Software Engineering,
61-72, (2000)

2. Tahat, L. H., Vaysburg, B., Korel, B. and Bader, A., Requirement based automated black-box test
generation. Proceedings of the 25th Annual Int. Computer Software and Applications Conference, 489-
495, (2001)

3. Bullard, L. A, and Gao, K., An application of a rule-based model in software quality classification,
Proceedings of the 6th International Conference on Machine Learning and Applications, pp.204-210,
2007.

4. Nagappan, N., Toward a software testing and reliability early warning metric suite. Proceedings of 26th
Int. Conference on Software Engineering Conference, (2004)

5. Khoshgoftaar, T. M., Van Hulse, J. and Napolitano, A., Supervised neural network modeling: an empir-
ical investigation into learning from imbalanced data with labeling errors. IEEE Transactions on Neural
Networks, 21(5), 813-830, (2010)

6. Khoshgoftaar, T. M., Building decision tree software quality classification models using genetic pro-
gramming.Proceedings of the Genetic and Evolutionary Computation Conference, (2003)

7. Tosun, A., Turhan, B. and Bener, A., Ensemble of software defect predictors: a case study. Proceedings
of 2nd International Symposium on Empirical Software Engineering and Measurement, (2008)

8. Boehm, B. and Basili, V. R., Software defect reduction top 10 list. IEEE Software, pp.135-137, (2001)
9. Munson, J. C. and Khoshgoftaar, T. M., Detection of fault prone programs, IEEE Transactions on

Software Engineering, (18)5, pp.423-433, (1992)
10. Khoshgoftaar, T. M. and Allen, E. B., Predicting fault-prone software modules in embedded systems

with classification trees, Proceedings of the 4th IEEE International Symposium on High-Assurance Sys-
tems Engineering,(1999)

11. Nagappan, N., Toward a software testing and rel iability early warning metric suite, Proceedings of
the 26th International Conference on Software Engineering, pp. 60-62, (2004)

12. Bell, R. M., Ostrand, T. J. and Weyuker, E. J., Looking for bugs in all the right places, Proceedings of
the 2006 International Symposium on Software Testing and Analysis, pp.61-71, (2006)

13. Ostrand, T. J. and Weyuker, and Bell, R. M., Where the bugs are, Proceedings of the 2004 ACM
SIGSOFT International Symposium on Software Testing and Analysis,pp. 86-96, (2004)

14. Ostrand, T. J. and Weyuker, and Bell, R. M., Automating algorithms for the identification of fault-
prone files, Proceedings of the 2007 International Symposium on Software Testing and Analysis, pp.
219-227, (2007)

15. Menzies, T. Z., Hihn, C. J. and Lum, K., Data mining static code attributes to learn defect predictors.
IEEE Transactions on Software Engineering, 33(1): 2-13 (2007)



34 Gül Çalıklı, Ayşe Başar Bener

16. Menzies, T., Turhan, B., Bener, A., Gay, G., Cukic, B., and Jiang, Y., Implications of ciling effects
in defect predictors, Proceedings of the 3rd Workshop on Predictive Models in Software Engineering,
pp.47-54,(2008)

17. Lessmann, S., Baesens, B., Mues, C., and Pietsch, S., Benchmarking classification models for soft-
ware defect prediction: a proposed framework and novel findings. IEEE Transactions on Software Engi-
neering,34(4): 485-496, (2008)

18. Drummond, C. and Holte, R. C., C4.5, Class imbalance and cost sensitivity: why under-sampling
beats over-sampling, Proceedings of 2nd Workshop on Learning from Imbalanced Datasets, (2003)

19. Kamei, Y., Monden, A., Matsumoto, T. and Matsumoto, K., The effects of over and under-sampling
on fault prone module detection, Proceedings of the 1st International Symposium on Empirical Software
engineering and Measurement,pp. 196-204, (2007)

20. Jiang, Y., Cuki, B., Menzies, T. and Bartlow, N., Comparing design and code metrics for software
quality prediction, Proceedings of the 4th International Workshop on Predictor Models in Software En-
gineering, (2008)

21. Zhao, M., Wohlin, C., Ohlsson, N. and Xie, M., A comparison between software design and code met-
rics for the prediction of software fault content, Information and Software Technology,(40)14, pp.801-
809, (1998)

22. Zimmerman, T. and Nagappan, N., Predicting subsystem failures using dependency graph complexi-
ties, Proceedings of the 18th IEEE International Symposium on Software Reliability, pp.227-236, (2007)

23. Nagappan, N. and Ball, T., Using software dependencies and churn metrics to predict field failures:
an empirical case study, Proceedings of the 1st International Symposium on Empirical Software Engi-
neering and Measurement, pp.364-373, (2007)

24. Misirli-Tosun, A., Caglayan, B., Mirasky, A., Bener, A., and Ruffolo, N., Different strokes for dif-
ferent folks: a case study on software metrics for different defect categories, Proceedings of the 2nd

Workshop on Emerging Trends in Software Metrics, pp. 45-51, (2011)
25. Nagappan, N. and Ball, T., Using software dependencies and churn metrics to predict fied failures,

Proceedings of the 1st Symposium on Empirical Software Engineering and Measurement, pp.364-373,
(2007)

26. Tosun, A., Turhan, B. and Bener, A., Practical considerations in deploying AI for defect prediction:
a case study within the Turkish Telecomunication industry. Proceedings of 5th International Conference
on Predictor Models in Software Engineering, (2009)

27. Turhan, B., Kocak, G. and Bener, A., Software defect prediction using call graph based ranking
(CGBR) framework., Proceding of. 34th International EUROMICRO Software Engineering and Ad-
vanced Applications Conference, (2008)

28. Kahneman D., Slovic P., and Tversky, A., Judgment Under Uncertainty: Heuristics and Biases. Cam-
bridge University Press, New York, (1982)

29. Stacy, W. and MacMillan, J., Cognitive bias in software engineering, Communication of the ACM,
(38)6, (1995)

30. Teasley, B., Leventhal, L. M., and Rohlman, S., Positive test bias in software engineering profes-
sionals: What is right and what’s wrong. Proceedings of the 5th Workshop on Empirical Studies of
Programmers,(1993)

31. Parsons, J., and Saunders, C., Cognitive heuristics in software engineering: applying and extending
anchoring and adjustment to artifact reuse, IEEE Transactions on Software Engineering, 30(12), pp.
873-888, (2004)

32. Mair, C. and M. Shepperd, Human judgement and software metrics: vision for the future, Proceedings
of the 2nd International Workshop on Emerging Trends in Software Metrics, (2011)

33. Jørgensen, M., Identification of more risks can lead to increased over-optimism of and over-confidence
in software development effort estimates, Journal of Information and Software Technology, (52)5,
pp.506-516, (2010)

34. Jørgensen, M., Estimation on software development work effort: evidence on expert judgement and
formal models, International Journal of Forecasting, 23(3), pp. 449-462, (2007).

35. Jørgensen, M., The effects of request formats on judgement-based effort estimation,Journal of Sys-
tems and Software, (83)1, pp. 29-36, (2010).

36. Graves, T. L., Karr, A. F.,Marron, J. S., and Siy, Harvey, Predicting fault incidence using software
change history, IEEE Transactions on Software Engineering, (26)7, pp.653-661, (2000)

37. Mockus, A. and Weiss, D. M., Predicting risk of software changes, Bell Labs Technical Journal,
pp.169-180, (2000)



Influence of developers’ confirmation biases on software quality: an empirical study 35

38. Weyuker, E.J., Ostrand, T. J. and Bell, R. M., Using developer information as a factor for fault pre-
diction, Proceedingds of the 1st International Workshop on Predictor Models in Software Engineering,
pp.1-7, (2007)

39. Ostrand, T., J., Weyuker, E. J. and Bell, R. M., Programer-based fault prediction, Proceedings of the
3rd Workshop on Predictor Models in Software Engineering, pp.1-7, (2010)

40. Meneely, A., Williams, L, Snipes, W., and Osborne, J., Predicting failures with developer networks
and social network analysis, Proceedings of the 16th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, pp.13-23, (2008)

41. Weyuker, E. J., Ostrand, T. J. and Bell, R. M.,Do too many cooks spoil the broth? Using the number
of developers to enhance defect prediction models, Journal of Empirical Software Engineering, 13, pp.
539-559, (2008)

42. Pinzger, M., Nagappan, N. and Murphy, B., Can developer-module networks predict failures?, Pro-
ceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pp.13-23, (2008)

43. Bird, C., Nagappan, N., Gall, H., Murphy, B. and Devanbu, P., Putting it all together: Using socio-
technical networks to predict failures, Proceedings of the 17th International Symposium on Software
Reliability Engineering, (2009)

44. Wason, P. C., 1960. On the failure to eliminate hypotheses in a conceptual task, Quarterly Journal of
Experimental Psychology, 12, pp.129-140, (1960)

45. Wason, P. C. 1968. Reasoning about a rule, Quarterly Journal of Experimental Psychology, 20, pp:
273-28, (1968)

46. Evans, J. St. B. T., Newstead, S. E. and Byrne, R. M., Human reasoning: the psychology of deduction.
Lawrence Erlbaum Associates Ltd., East Sussex, U.K. (1993)

47. Cox, J. R. and Griggs, R. A., The effects of experience on performance in Wasons selection task,
Memory and Cognition, 10, pp.496-502 (1982)

48. Griggs, R. A. and Cox, J. R., The elusive thematic materials effect in Wasons selection task, British
Journal of Psychology, 73, pp.407-420 (1982)

49. Cheng, P. W. and Holyoak, K. J., Pragmatic reasoning shemas, Cognitive Psychology, 17, pp.391-416,
(1985)

50. Cosmides, L., The logic of social exchange: Has natural selection shaped how humans reason ? Stud-
ies with Wasons selection task, Cognition, 31, pp.187-276, (1989)

51. Manktelow, K. I. and Over, D. E., Inference and understanding: A philosophical and psychological
perspective, (1990)

52. P. C. Wason and Shapiro, D.Natural and Contrieved Experience in a Reasoning Problem, Quarterly
Journal of Experimental Psychology, 23, pp.63-71, (1971)

53. Manktelow, K. I. and Evans, J. St. B. T., Facilitation of reasoning by realism: Effect or non-effect?,
Biritish Journal of Psychology, 70, pp.477-488, (1979)

54. Johnson-Laird, P.N. and Tridgell, J. M., When negation is easier than affirmation, Quarterly Journal
of Experimental Psychology, 24, pp.87-91, (1972)

55. Griggs, R.A., The role of problem content in the selection task and in the THOG problem, Thinking
and reasoning: psychological approaches. Routledge and Kegan Paul London, (1983).

56. Khoshgoftaar, T. M. and Szabo, R. M., Using neural networks to predict software faults during testing,
IEEE Transactions on Reliability, 45, pp.456462, (1996)

57. Reich, S.and Ruth, P., Wason’s selection task: verification, falsificatin and matching, British Journal
of Psychology, 73, pp.395-405, (1982)

58. Kocaguneli, E., Tosun, A., Bener, A., Turhan, B., and Caglayan, B., Prest: an intelligent software
metrics extraction, analysis and defect prediction tool, Procedings of 21st International Conference on
Software Engineering and Knowledge Engineering, pp.637-642, (2009)

59. Calikli, G., Bener, A., and Arslan, B., An analysis of the effects of company culture, education and
experience on confirmation bias levels of software developers and testers. Proceedings of 32nd Interna-
tional Conference on Software Engineering, (2010)

60. Calikli, G., Arslan, B., and Bener, A., Confirmation bias in software development and testing: an
analysis of the effects of company size, experience and reasoning skills. Proceedings of the 22nd Annual
Psychology of Programming Interest Group Workshop, (2010)

61. Calikli, G. and Bener, A., Empirical analyses factors affecting confirmation bias and the effects of
confirmation bias on software developer/tester performance. Proceedings of 5th International Workshop
on Predictor Models in Software Engineering, (2010)

62. Hall, M. A. and Holmes, G. , Benchmarking attribute selection for discrete class data mining. IEEE
Transactions on Knowledge and Data Engineering, 15, pp.1437-1447, (2003)



36 Gül Çalıklı, Ayşe Başar Bener

63. Nagappan, N., Murphy, B. and Basili, V. R., The influence of organizational structure on software
quaity: an empirical case study, Proceedings of the 30th International Conference on Software Engineer-
ing, pp.521-530,(2008)

64. Teasley, B. F., Leventhal, L. M., Mynatt, C. R. and Rohlman D. S., Why software testing is sometimes
ineffective: two applied studies of positive test strategy. Journal of Applied Psychology, 79, 1, pp.142-
155, (1994)

65. Johnson-Laird, P.N. and Wason, P. C., A theoretical analysis of insight into a reasoning task, Cognitive
Psychology, 1, pp.134-148, (1970)

66. Mataraso-Roth, E., Facilitating insight in a reasoning task, British Journal of Psychology, 70, pp.265-
271, (1979)

67. Evans, J.,St.,B.,T. and Lynch, J., S.,Matching bias in the selection task, British Journal of Psychology,
64, pp.391-397, (1973)

68. McCabe, T., A complexity measure, IEEE Transactions on Software Engineering, 2, pp.308-320,
(1976)

69. Halstead, M., Elements of software science, Elsevier, (1977)
70. Popper, K.R., The logic of scientific discovery. Hutchinson, London, (1959/1974)
71. Turhan, B. and Bener, A., A multivariate analysis of static code attributes for defect prediction, Pro-

ceedings of the 7th International Conference on Quality Software, pp. 231-237, (2007)
72. Turhan, B. and Bener, A., Weighted static code attributes for software defect prediction, Proceedings

of the 20th International Conference on Software Engineering and Knowledge Engineering, pp.143-148,
(2008)

73. Turhan, B., Bener, A. and Menzies, T., Nearest neighbor sampling for cross company defect predic-
tors, Proceedings of the 1st International Workshop on Defects in Large Software Systems, (2008)

74. Cook, T.D. and Campbell, D.T. Quasi-experimentation: design and analysis issues for field settings.
Houghton Mifflin, Boston, (1979)


