
Advancing the Research on Human
Cognition in Software Engineering

Gül Çalıklı

Chalmers | University of Gothenburg
Gothenburg, Sweden

Cognitive Biases

• Cognitive biases are systematic deviations of
human mind from optimal reasoning that
produce errors in judgement.

2

Cognitive Biases

3

Amos Tversky

Daniel Kahneman

* This article originally appeared in Science, vol. 185, 1974.

Cognitive Biases

4

Over 200 cognitive biases
have been identified in

psychology, sociology and
management research[1,2].

Source: Wikipedia, “List of Cogitive Biases”,
https://en.wikipedia.org/wiki/List_of_cognitive_biases

Common Sources of Cognitive Biases

5

Limitations in information
processing capacity (e.g.,
memory, working
memory).

lead to

Mental short-cuts called
”heuristics”

Cognitive Limitations

Emotions facilitate memory:
When we have an emotional
experience, emotional center of the
brain “amygdala” up-regulates the
hippocampus, which has a major
role in memory.

Emotions

Individual Motivations

Social Pressure

Cognitive Biases in Software Engineering

6

• Software is designed and developed by people.

Cognitive Biases in Software Engineering

7

• There is involvement of human
judgement in every stage of
Software Development Life
Cycle (SDLC).

Some Examples for Studies in Cognitive Biases in SE

8

[3, 10]

[4, 5]

quality management [6, 9]

[7, 8]

Anchoring & Adjustment: Making
estimates by starting from an initial value
that is adjusted to yield the final answer.
Anchoring occurs when adjustments are
insufficient.

[8]

[11]

[8, 11]

Overconfidence:Tendency to be more
confident in one’s own abilities.

[9, 12, 14]

[4]

[7, 13]

[7]

[12]
project management

Availability:Tendency to deem what is
easy to recall as being significant.

[15]

[7]

[16]

[16]

[16]

Representativeness: Assessing the
probability of an event or item based on
the similatitie of the features to the
parent population.[7, 17, 18, 20, 21]

[12]

[19]

Confirmation Bias: Favoring information
that confirms our beliefs.

For further information à “R. Mohanani, I. Salman, B. Turhan, P. Rodríguez and P. Ralph, "Cognitive Biases in
Software Engineering: A Systematic Mapping Study," in IEEE Transactions on Software Engineering.”

My Previous Research: Confirmation Bias in SE
• Confirmation Bias: Tendency to find evidence that

supports one’s beliefs rather than finding evidence
refuting them.

• Due to confirmation bias, developers perform unit tests
to make their program work rather than to break their
code*.

9

Formation of the Metrics Repository:
• consists confirmation bias values of 199

software engineers:
• 129 developers
• 26 testers
• 32 analysts
• 12 project managers

Prepare
confirmation

bias tests

Prepare/
update

metrics set

Administer
confirmation

bias tests

Analyze
Test

Results

Update
metrics

set?

Final
metrics

set

YES

NO

Formation of a Metrics Set:

*L. M. Leventhal, B. M. Teasley, D. S. Rohlman, and K. Instone, ”Positive test bias in software testing
among professionals: A review," in International Conference on Human—Computer Interaction. Springer,
1993, pp. 210—218.

• Algorithm: Naive Bayes
• Input data: static code, churn,

confirmation bias metrics
• Pre-processing: under-sampling
• 10x10 cross validation

My Previous Research: Confirmation Bias in SE

Building Defect Prediction Models:

Results Summary:
• Confirmation Bias is a single human

aspect.
• Yet, using confirmation bias metrics

we obtained comparable
performance results

• Therefore, we should further
investigate human aspects...

Cognitive Biases in SE: Research Gap

11

Is the observed phenomenon manifestation of the claimed
cognitive bias?

Research Gap #1:

Cognitive Biases in SE: Research Gap

12

Proposed Solution: Triangulation

SE Experiment: Treatment
aims to trigger cognitive
bias X.

Measurement Set-up to
measure participants’
proneness to cognitive
bias X.

Confirmation of Results
Devise a measurement set-up
based on a psychology experiment
from the literature, such that:
• mediating process to trigger

cognitive bias X is manipulated
directly.

Mediating process to
trigger cognitive bias X
must be similar in nature
both in SE experiment
and in the measurement
setup.

Application of Proposed Solution

13

accepted at ICSE’20

Contemporary Code Review

14

Comments put by reviewers
on a specific code are
immediately visible to other
reviewers involved.

Could this visibility prime
reviewers’ attention (due to
proneness to availability
bias) and thus bias review
outcome?

What is
availability bias?

Availability Bias

What comes to mind quickly (i.e., easy to recall) is
deemed significant – sometimes incorrectly.

15

Information I need
to make a decision

All available
information

Information
I know about

Information
I saw yesterday

Some Examples of Availability Bias
• A salient event that attracts one’s attention (e.g., divorces of

celebrities).

• A dramatic event one has witnessed or seen on news (e.g., a plane
crash on the news, seeing a burning car on the side of the road).

• Personal experiences (e.g., a judicial error that affects you
undermines your faith in justice system.)

• Recenty being exposed to some phenomena (e.g., watching a spy
movie and then seeing conspiracies everywhere).

16

Covered in
the newsWhat actually

happens in the
world

Availability Bias in Contemporary Code Review

17

Could visibility of previously
made comments prime
reviewers’ attention towards (a)
specific bug type(s) and thus
affect review outcome?

Are the current code review
settings robust to such
priming despite developers’
potential proneness to
availability bias?

Some questions we asked
ourselves during the initiation
of this study…

How prone are
developers to
availability bias?

Could such priming
result in
overlooking of
other bug types?

Availability Bias in Contemporary Code Review

18

Could visibility of previously
made comments prime
reviewers’ attention towards
(a) specific bug type(s) and
thus affect review outcome?

Is the current code review
settings robust to such
priming despite
developers’ potential
proneness to availability
bias?

Some questions we asked
ourselves during the
initiation of this study…

How prone are
developers to
availability bias?

Could such
priming result in
overlooking of
other bug types?

Taking one step
back and we asked:

How would this priming
induced by previously made
comments about bugs afffect
code review outcome?

Does the priming
effect change with
respect to the bug
type (e.g., bugs
normally considered
vs. bugs normally not
considered)?

Research Questions

19

RQ1: What is the effect of priming the reviewer with a
bug that is not normally considered?

RQ2: What is the effect of priming the reviewer with a
bug that is normally considered?

Experimental Design

20

Code Review Experiment

Assessment of Proneness to Availability Bias

Welcome
Page

Participant’s
Demographics

Actual
Experiment

Interruptions
during the

Experiment

Follow-up
Questions

Participants are not
informed about the
full purpose of the
experiment to avoid
demand
characteristics.

- Gender & Age
- English proficiency
- Highest Education
- Experience in sw
development
- Experience in Java
programmig, etc.

Treatment Group 1:
Code1, primed for BugA
Control Group 1: Code
1, not primed
Treatment Group2:
Code2, primed for BugB
Control Group 2: Code
2, not primed.

Did the participants
get interrupted?
If so, for how long?

Show the bugs in the
code and ask if the
participant could detect
the bug ?
- If not, why?
- If yes, do they think
whether they were
primed?

Welcome
Page

Warm-up
Session

Actual
Psychology
Experiment

Measuring
Proneness to
Availability

Bias
Participants are told
that experiment
aims to measure
developers’
attention to avoid
demand
characteristics.

Design of measurement set-up is based on the psychology
experiment by Gabrielcik and Fazio1.
1 Gabrielcik, A., & Fazio, R. H. (1984). Priming and frequency estimation: A strict test of the
availability heuristic. Personality and Social Psychology Bulletin, 10(1), 85–89

Experimental Design

21

Code Review Experiment

Assessment of Proneness to Availability Bias

Welcome
Page

Participant’s
Demographics

Actual
Experiment

Interruptions
during the

Experiment

Follow-up
Questions

Welcome
Page

Warm-up
Session

Actual
Psychology
Experiment

Measuring
Proneness to
Availability

Bias

Actual Code Review Experiment

22

RQ1: What is the effect of priming the reviewer with a bug that
is not normally considered (i.e., BUGA)?

Treatment Group 1 Control Group 1
2 bugs of type BUGA and 1 bug of type BUGB
are injected into the code change.
• BUGA: Bugs that’s are NOT normally

considered (e.g., NullPointerException*)
• BUGB: Bugs that’s are normally

considered (e.g., Corner case bugs*)

Prime with BUGA (i.e., a
reviewer comment for one
of the bugs of type BUGA
exists on code change)

No reviewer comments
(i.e., no priming).

Actual Code Review Experiment

23

RQ2: What is the effect of priming the reviewer with a bug that
is normally considered (i.e., BUGB)?

Treatment Group 2 Control Group 2
2 bugs of type BUGBand 1 bug of type BUGA
are injected into the code change.
• BUGA: Bugs that’s are NOT normally

considered (e.g., NullPointerException*)
• BUGB: Bugs that’s are normally

considered (e.g., Corner case bugs*)

Prime with BUGB (i.e., a
reviewer comment for one
of the bugs of type BUGB
exists on code change)

No reviewer comments
(i.e., no priming).

Actual Code Review Experiment: A Screenshot

24

Sreenshot of the online
experiment given to
Treatment Group 2

Experimental Design

25

Code Review Experiment

Assessment of Proneness to Availability Bias

Welcome
Page

Participant’s
Demographics

Actual
Experiment

Interruptions
during the

Experiment

Follow-up
Questions

Welcome
Page

Warm-up
Session

Actual
Psychology
Experiment

Measuring
Proneness to
Availability

Bias

Psychology Experiment: Warm-up Session

• Participants are asked to focus on a series of 20 words
flashing on the screen.

• Words are randomly selected from the English Dictionary.
• None of the words contain letter “T”.
• Each word flashes on the screen for 300 milliseconds.

• At the end of the session participants are asked to write 3
words they have seen.

26

Experimental Design

28

Code Review Experiment

Assessment of Proneness to Availability Bias

Welcome
Page

Participant’s
Demographics

Actual
Experiment

Interruptions
during the

Experiment

Follow-up
Questions

Welcome
Page

Warm-up
Session

Actual
Psychology
Experiment

Measuring
Proneness to
Availability

Bias

Actual Psychology Experiment

• We show 2 series of 20 words, each.

• Words are randomly selected from the English
Dictionary.

• Each word contains at least one letter “T”.

• Each word flashes on the screen for 150 milliseconds.

• At the end each series, participants are asked to write 3
words they have seen.

29

Experimental Design

30

Code Review Experiment

Assessment of Proneness to Availability Bias

Welcome
Page

Participant’s
Demographics

Actual
Experiment

Interruptions
during the

Experiment

Follow-up
Questions

Welcome
Page

Warm-up
Session

Actual
Psychology
Experiment

Measuring
Proneness to
Availability

Bias

Measuring Proneness to Availability Bias

31

How Triangulation is employed in this study…

32

Code Review Experiment

Assessment of Proneness to Availability Bias

Welcome Page
Participant’s

Demographics
Actual

Experiment

Interruptions
during the

Experiment

Follow-up
Questions

Welcome Page
Warm-up
Session

Actual
Psychology
Experiment

Measuring
Proneness to
Availability

Bias

SE Experiment Measurement Set-up

Confirmation of Results

We devised a measurement set-up
based on a psychology experiment
from the literature, such that:
• mediating process (i.e., memory

priming) to trigger availability bias
is manipulated directly.

How Triangulation is employed in this study…

33

Code Review Experiment

Assessment of Proneness to Availability Bias

Welcome Page
Participant’s

Demographics
Actual

Experiment

Interruptions
during the

Experiment

Follow-up
Questions

Welcome Page
Warm-up
Session

Actual
Psychology
Experiment

Measuring
Proneness to
Availability

Bias

SE Experiment Measurement Set-up

Confirmation of Results

Mediating process to trigger
availability bias is memory
priming both in code review
experiment and in the setup for
the assessment of proneness
to availability bias.

Findings

34

Primed Bug (NPE) Treatment Group1 Control Group1 Total

found 13 2 15

not found 8 15 23

Odds Ratio: 12.19 (2.19, 67.94)

p < 0.001

Not Primed Bug (CC) Treatment Group1 Control Group1 Total

found 14 14 28

not found 7 3 10

Odds Ratio: 0.43 (0.09, 2.00)

p < 0.275

Odds ratio for capturing the
primed and not primed bug:
Primed Bug: NullPointerException (NPE)
Not primed Bug: Corner Case (CC)

Primed Bug Not Primed Bug

Estimate S.E. Sig. Estimate S.E. Sig.

Intercept 0.704 4.734 -0.893

IsPrimed 3.627 1.320 ** -1.199 1.073

TotalDuration 0.001 0.002 0.003 0.001 *

ProfDevExp 0.813 0.557 -0.503 0.554

ProgramPractice -0.096 0.828 -0.243 0.736 *

….

Interruptions -1.752 0.758 * -0.715 0.444

Regression for the primed
and not primed bug:
Significance codes:
*** p < 0.001,

** p < 0.01
* p < 0.1

Finding 1:
Reviewers primed on a bug that is not
normally considered (e.g., NPE) are more
likely to find other occurrences of this type
of bugs.

However, this does not prevent them from
finding also other types of bugs.

Findings

35

Primed Bug (CC) Treatment Group2 Control Group2 Total

found 10 8 18

not found 12 17 29

Odds Ratio: 1.77 (0.54, 5.81)

p < 0.344

Not Primed Bug (NPE) Treatment Group2 Control Group2 Total

found 13 13 29

not found 9 9 18

Odds Ratio: 0.81 (0.25, 2.64)

p < 0.73

Odds ratio for capturing the
primed and not primed bug:
Primed Bug: Corner Case (CC)
Not primed Bug: NullPointerException
(NPE)

Primed Bug Not Primed Bug

Estimate S.E. Sig. Estimate S.E. Sig.

Intercept 1.051 4.734 3.037e-01 2.568

IsPrimed 0.926 0.722 * -1.670e-01 7.74e-01

TotalDuration 0.001 0.001 . 9.561e-05 3.721e-01

ProfDevExp 0.813 0.557 -1.061 7.353e-01

ProgramPractice 1.153 0.378 1.211 4.683e-01 **

….

Interruptions -0.175 0.322 -0.715 0.444

Regression for the primed
and not primed bug:
Significance codes:
*** p < 0.001,

** p < 0.01
* p < 0.05
. P < 0.1

Finding 2:
Reviewers primed on a bug that is normally
considered (e.g., CC) perceive an influence,
but are as likely as the other to find bugs of
this type.

Furthermore, primed participants did not
capture fewer bugs of other type.

Conclusions
• GOAL: To test the robustness of peer code review against reviewers’

potential proneness to availability bias.
• Methodology: Online experiment conducted with 85 participants.

• Psychology Experiment Results: Majority of the participants (~%70)
are prone to availability bias (median = 3.8, max = 4).

36

Conclusions

37

• Code Review Experiment Results show that when reviewers are
primed for:
– a bug that is normally considered:

• this does not affect their performance in finding bugs.
– a bug that is normally NOT considered:

• this increases their likelihood of finding bugs of similar type,
• without affecting their performance in finding other types of bugs.

Existing comments act as
(positive) reminders rather

than (negative) primers.

Cognitive Biases in SE: Research Gap

38

Mediating processes that manifest cognitive biases (e.g., What
happens in memory, working memory, etc.?)

Research Gap #2:

Why is understanding
mediating processes
important?

Cognitive Biases in SE: Research Gap

39

Mediating processes that manifest cognitive biases (e.g., What
happens in memory, working memory, etc.?)

Research Gap #2:

It can help development
of tools/techniques for
de-biasing.

Back to Common Sources of Cognitive Biases

40

Limitations in information
processing capacity (e.g.,
memory, working
memory).

lead to

Mental short-cuts called
”heuristics”

Cognitive Limitations

Emotions facilitate memory:
When we have an emotional
experience, emotional center of the
brain “amygdala” up-regulates the
hippocampus, which has a major
role in memory.

Emotions

Individual Motivations

Social Pressure

Bounded Rationality

Bounded rationality is the idea
that rationality is limited, when
individuals make decisions, by the:
• tractability of the decision problem,
• cognitive limitations of the mind (e.g.,

memory, working memory), and
• time available to make the decision.

41

Cognitive biases are a "by-product" of human processing
limitations, resulting from a lack of appropriate mental
mechanisms or simply from a limited capacity for
information processing (e.g., memory, working memory).

Herbert A. Simon

Towards Understanding Working Memory…

42

ESEC/FSE 2019

Research Goal

• Numerous techniques to improve program
comprehension and trace features.

• Often heavyweight or separated from actual code.

• Can explicit feature traceability on code level support
program comprehension?
– Annotations
– Components

43

Research Questions

44

RQ1: What is the impact of feature traces on effectively
solving tasks?

RQ2: What is the impact of feature traces on efficiently
solving tasks?

RQ3: What is developers’ perception of feature traces?

Methodology: Online Experiment

• 49 participants
• Three tasks on feature comprehension, three on bug

localization
• Measured time and correctness
• Questions on participants’ perception

45

Treatment Group 1 Control Group Treatment Group 2

Feature traceability with
annotations

Feature traceability with
components

NO feature traceability
(object-oriented)

Results: Effectiveness (RQ1)

46

Observation:
Feature traces improve feature
(interaction) comprehension.

Accepted twice for annotations.

Results: Effectiveness (RQ1)

47

Observation:
Components hamper bug
localisation (i.e., bug in a feature
interaction)

Accepted once.

Results: Efficiency (RQ2)

48

Observation:
Explicit feature traces do not impact the analysis time.

Not rejected.

Results: Perception (RQ3)

49

“Yes, they did. In fact, without the annotations (provided
that they are correct), it would have been significantly more
difficult to understand which part of the code does what.”

“[N]o, adding comments is a bad sign, it screams that code
is not self explanatory enough.”

“On the one hand, it made the classes small and locating
possibly relevant code easy. On the other hand, interactions
were more difficult to spot, because I had to switch between
different classes.”

Results: Perception (RQ3)

50

Observations:
Explicit feature traces:
• extend analysis strategies,
• are unproblematic to use, and
• are positively perceived.

Conclusions

• Annotations have positive impact on program
comprehension.

• Components can negatively impact bug localization:

– Depends on the decomposition strategy

– Requires analysis at what point a component is useful

• Feature traces do not impact analysis efficiency.

• Feature traces are understandable and positively
perceived.

à Annotations seem proper to introduce feature traceability
in practice

51

To Conclude …

52

Summary of the Talk

53

References
[3] A. Tang, ”Software designers, are you biased?" in Proceedings of the 6th International Workshop on Sharing and
Reusing Architectural Knowledge. ACM, 2011, pp. 1-8.
[4] K. Mohan and R. Jain, ”Using traceability to mitigate cognitive biases in software development," Communications of
the ACM, vol. 51, no. 9, pp. 110-114, 2008.
[5] K. Mohan, N. Kumar, and R. Benbunan-Fich, ”Examining communication media selection and information
processing in software development traceability: An empirical investigation," IEEE Transactions on Professional
Communication, vol. 52, no. 1, pp. 17-39, 2009.
[6] T. K. Abdel-Hamid, K. Sengupta, and D. Ronan, ”Software project control: An experimental investigation of judgment
with fallible information," IEEE Transactions on Software Engineering, vol. 19, no. 6, pp. 603-612, 1993.
[7] W. Stacy and]. MacMillan, ”Cognitive bias in software engineering," Communications of the ACM, vol. 38, no. 6, pp.
57—63, 1995.
[8] G. Browne and V. Ramesh, ”Improving information requirements determination: a cognitive perspective," Information
8 Management, vol. 39, no. 8, pp. 625-645, 2002.
[9] J. A. O. da Cunha, F. Q. da Silva, H. P. de Moura, and F. J. Vasconcellos, ”Decision-making in software project
management: A qualitative case study of a private organization,” in Proceedings of the 9th International Workshop on
Cooperative and Human Aspects of Software Engineering. ACM, 2016, pp. 26-32.
[10] J. Parsons and C. Saunders, ”Cognitive heuristics in software engineering applying and extending anchoring and
adjustment to artifact reuse," IEEE Transactions on Software Engineering, vol. 30, no. 12, pp. 873-888, 2004.
[11] C. Mair and M. Shepperd, ”Human judgement and software metrics: Vision for the future," in Proceedings
of the 2nd international workshop on emerging trends in software metrics. ACM, 2011, pp. 81-84.
[12] K. A. De Graaf, P. Liang, A. Tang, and H. Van Vliet, ”The impact of prior knowledge on searching in
software documentation,” in Proceedings of the 2014 ACM symposium on Document engineering. ACM,
2014, pp. 189-198.
[13] R. Jain,]. Muro, and K. Mohan, ”A cognitive perspective on pair programming,” AMCIS 2006
Proceedings, p. 444, 2006.
[14]]. A. O. G. da Cunha and H. P. de Moura, ”Towards a substantive theory of project decisions in software
development projectbased organizations: A cross-case analysis of it organizations from brazil and portugal,"
in Information Systems and Technologies (CISTI), 2015 10th Iberian Conference on. IEEE, 2015, pp. 1—6.
[15] G. Calikli, A. Bener, B. Caglayan, and A. T. Misirli, ”Modeling human aspects to enhance software quality
management,” in Thirty Third International Conference on Information Systems, 2012.

54

References

[16] M. Nurminen, P. Suominen, S. Ayramo, and T. Karkkainen, ”Applying semiautomatic generation of
conceptual models to decision support systems domain," in IASTED International Con— ference on
Software Engineering (SE 2009). ACTA Press, 2009.
[17] G. Calikli and A. Bener, ”Empirical analyses of the factors affecting confirmation bias and the
effects of confirmation bias on software developer/tester performance," in Proceedings of the 6th
International Conference on Predictive Models in Software Engineering. ACM, 2010, p. 10. G. Calikli,
A. Bener, and B. Arslan
[18] L. M. Leventhal, B. M. Teasley, D. S. Rohlman, and K. Instone, ”Positive test bias in software
testing among professionals: A review," in International Conference on Human—Computer Interaction.
Springer, 1993, pp. 210—218.
[19] E. D. Smith, Y.]. Son, M. Piattelli-Palmarini, and A. Terry Bahill, ”Ameliorating mental mistakes in
tradeoff studies," Systems Eh— giheerihg, vol. 10, no. 3, pp. 222—240, 2007.
[20] G. Calikli, A. Bener, T. Aytac, and O. Bozcan, ”Towards a metric suite proposal to quantify
confirmation biases of developers," in Empirical Software Engineering and Measurement, 2013
ACM/IEEE International Symposium on. IEEE, 2013, pp. 363—372.
[21] F. Shull, ”Engineering values: From architecture games to agile requirements," IEEE Software,
vol. 30, no. 2, pp. 2—6, 2013.

55

