Advancing the Research on Human
Cognition in Software Engineering

Gul Cahikl

Chalmers | University of Gothenburg
Gothenburg, Sweden

CHALMERS (%)) UNIVERSITY OF GOTHENBURG

Cognitive Biases

« Cognitive biases are systematic deviations of
human mind from optimal reasoning that
produce errors in judgement.

WHAT DO YOU GET
WHEN YOU COMBINE OUR BUSINESS I1GUESS GooD
COGNITIVE BIAS STRATEGY! HAHA- ISHOULD puck
WITH INACCURATE HAHAHAHA!!! KEEP MY WITH
INFORMATION? DAY JOB. THAT.

\ L

¥,

(&%) UNIVERSITY OF GOTHENBURG

N
T

Dilbert com DilbertCartoonst@gmail com
N

0510 02000 Scon Adams, Inc./Dist. by UFS, Inc.
-

CHALMERS

CHALMERS

Cognitive Biases

Judgment under Uncertainty:
Heuristics and Biases

Biases in judgments reveal some heuristics of

thinking under uncertainty.

Amos Tversky and Daniel Kahneman

Many decisions are based on beliefs
concerning the likelihood of uncertain
events such as the outcome of an elec-
tion, the guilt of a defendant, or the
future value of the dollar. These beliefs
are usually expressed in statements such
as “I think that . . . ,” “chances are

,7 “it is unlikely that . . . ,)” and
so forth. Occasionally, beliefs concern-
ing uncertain events are expressed in
numerical form as odds or subjective
probabilities. What determines such be-
liefs? How do people assess the prob-
ability of an uncertain event or the

mated when visibility is good because
the objects are seen sharply. Thus, the
reliance on clarity as an indication of
distance leads to common biases. Such
biases are also found in the intuitive
judgment of probability. This article
describes three heuristics that are em-
ployed to assess probabilities and to
predict values. Biases to which these
heuristics lead are enumerated, and the
applied and theoretical implications of
these observations are discussed.

* This article originally appeared in Science, vol. 185, 1974.

UNIVERSITY OF GOTHENBURG

occupation from a list of possibilities
(for example, farmer, salesman, airline
pilot, librarian, or physician)? How do
people order these occupations from
most to least likely? In the representa-
tiveness heuristic, the probability that
Steve is a librarian, for example, is
assessed by the degree to whichk he is
representative of, or similar to, the
stereotype of a librarian. Indeed, re-
search with problems of this type has
shown that people order the occupa-
tions by probability and by similarity
in exactly the same way (7). This ap-
proach to the judgment of probability
leads to serious errors, because sim-
ilarity, or representativeness, is not in-
fluenced by several factors that should
affect judgments of probability.
Insensitivity to prior probability of
outcomes. One of the factors that have
no effect on representativeness but
should have a major effect on probabil-
ity is the prior probability, or base-rate
frequency, of the outcomes. In the case
of Steve, for example, the fact that
there are many more farmers than Ii-
brarians in the population should enter
into any reasonable estimate of the
probability that Steve is a librarian
rather than a farmer. Considerations of
base-rate frequency, however, do not
affect the similarity of Steve to the

Cognitive Biases

COGNITIVE BIAS CODEX

We store memories differently based
on how they were experienced

F]
3
e
We reduce events and lists c =
5 Bl
What Should We to their key elements & z .
oF @ B
Remember? 3% £ %3
83§3582 3
i ifi 232 3 £
We discard specifics H 323 a § 3
to form generalities 2 5%%%3 3
*23283 2
2aa833 <
Tecese o

We edit and reinforce
some memories after the fact

s
¢
. " . ©ss.,;.
We favor simple-looking options s,
. ; [o)
and complete information over @ RN,
. N Q7
complex, ambiguous options o) Oey,,0n ,
Ry k.52 oy ° 0
YMe o Udling Vi
eage

To avoid mistakes,

we aim to preserve autonomy . D:c s b,:; :
and group status, and avoid Re?’c‘e;:eﬂ 3
ce ®

irreversible decisions Reverse psychology o

System justification ®

Backfire effect ®

n el —
Gy
To get things done, we tend \WKEA e“::‘n .
to complete things we've @ \,055::: ‘eﬁecv::. -
invested time & energy in Gc“\c:mf":;\‘;f\oﬂ‘ *
esch\”“\c 1\0‘\::_ ::s e e
S0 ; “\c\\““\:e ey
deo““ PQ??\;Z“
«
To stay focused, we favor the W
immediate, relatable thing @ @

in front of us

Need To efab@
Act Fast

.o
§%

. 43

To act, we must be confident we o
22

can make an impact and feel what e
L £9

we do is important >3

e

We project our current mindset and
assumptions onto the past and future

CHALMERS @»},ﬁ

TEoL

o Attentional bias

UNIVERSITY OF GOTHENBURG

We notice things already primed in - .
9 omorvormpasdhor Over 200 cognitive biases
5’5 55 ° Biz:rre,funny,\;\isua}ily-striki . L .
t gE t ic things sti

§§—§§§§ ::anr::rir;;:re/unfur?nytl' have been Identlfled In

o wuet psychology, sociology and
€ &
H [1.2]
: management researchl!.2,

We notice flaws in others

- @ more easily than than we
notice flaws in ourselves
Afabulation
. ((:Z(l]us(wlﬂg flusion ize
% Insensitivity to samP e si
+ Neglect of probability
o Anecdotal fallacy
— o lllusion of validity We tend to find stories and

 Masked man fallacy
® Recency illusion

® Gambler's fy|
.

@ patterns even when looking

llacy at sparse data

We fill in characteristics from
stereotypes, generalities,
and prior histories

o s o

g

We imagine things and people

56 @ we're familiar with or fond of
% % as better
29)
%‘ a % 2 We simplify probabilities and numbers Not Enough
537 o to make them easier to think about .
& Meaning
- We think we kno

other people are

Source: Wikipedia, “List of Cogitive Biases”,
https://en.wikipedia.org/wiki/List_of cognitive_biases

Common Sources of Cognitive Biases

/_ Cognitive Limitations

Limitations in information
processing capacity (e.g.,

memory, working
Qemory).

\ /— Individual Motivations —\

Mental short-cuts called

"heuristics”

>

Emotions

<%
~

£
%

Emotions facilitate memory:
When we have an emotional
experience, emotional center of the
brain “amygdala” up-regulates the
hippocampus, which has a major
role in memory.

Y. PREFRONTAL. i
CORTEX e p

4 AuDITORY E

Al CORTEX

Al cortex b

S PARIETAL N

[{idato S \,:;.
4| HIPPOCAMPUS |

4k CEREBELLUM

7\

/— Social Pressure

)

- J

LOBE

OCCIPITAL

CHALMERS

(&%) UNIVERSITY OF GOTHENBURG

Cognitive Biases in Software Engineering

« Software is designed and developed by people.

Database Administrator QA Specialist

52

< Product
Manager

Software

Architect > < Business

Analyst

Web Developer

CHALMERS

(&%) UNIVERSITY OF GOTHENBURG

N
T

Cognitive Biases in Software Engineering

Communication
\\ Requirement Gathering
| Feasibility Study
System Analysis
Software Design
S D LC Coding
Testing
Integration
Implementation

Operations & Maintenance

Disposition

There is involvement of human
judgement in every stage of
Software Development Life
Cycle (SDLC).

CHALMERS

(&%) UNIVERSITY OF GOTHENBURG

Some Examples for Studies in Cognitive Biases in SE

Communication

\ Requirement Gathering [7, 8] [8][16]

\\ Feasibility Study [16]

System Analysis [16]

Software Design [3, 10] [4][19]

S D LC Coding [4, 5] [7, 13][7]

Testing [7]

[7,17, 18, 20, 21]

Integration

Implementation

Anchoring & Adjustment: Making
estimates by starting from an initial value
that is adjusted to yield the final answer.
Anchoring occurs when adjustments are
insufficient.

Overconfidence:Tendency to be more
confident in one’s own abilities.

Availability:Tendency to deem what is
easy to recall as being significant.

Representativeness: Assessing the
probability of an event or item based on
the similatitie of the features to the
parent population.

Confirmation Bias: Favoring information
that confirms our beliefs.

project management [9, 12, 14]

Operations & Maintenance [12][12]

Disposition

quality management

[15][6, 9]

CHALMERS

;: UNIVERSITY OF GOTHENBURG For further information = “R. Mohanani, I. Salman, B. Turhan, P. Rodriguez and P. Ralph, "Cognitive Biases in

Software Engineering: A Systematic Mapping Study," in IEEE Transactions on Software Engineering.”

My Previous Research: Confirmation Bias in SE

- Confirmation Bias: Tendency to find evidence that Bt Scuuric Mene> {| Wlie Cretost Meop

) . ST . RTHR FACTS. ene!
supports one’s beliefs rather than finding evidence e SRy || et T caia .
refuting them.

» Due to confirmation bias, developers perform unit tests
to make their program work rather than to break their

code®.

Formation of a Metrics Set:

!

Prepare Prepare/ Administer Analyze
confirmation |=—> update —> confirmation [~ Test metrics metrics
bias tests metrics set bias tests Results set? set
Formation of the Metrics Repository:
TURKCELL
e consists conf!rmatlon bias values of 199 O VERIPARK
software engineers:
« 129 developers IBM in Canada o
The IBM Canada Software Labs 2
« 26 testers iNFiNg
LOGO
- 32analysts e inNnowvA

* 12 project managers

*L M. Leventhal, B. M. Teasley, D. S. Rohlman, and K. Instone, ”Positive test bias in software testing

Ei’s UNIVERSITY OF GOTHENBURG among professionals: A review," in International Conference on Human—Computer Interaction. Springer,
1993, pp. 210—218.

CHALMERS

My Previous Research: Confirmation Bias in SE

Building Defect Prediction Models:

« Algorithm: Naive Bayes

» Input data: static code, churn,
confirmation bias metrics

* Pre-processing: under-sampling
* 10x10 cross validation

Results Summary:

e Confirmation Bias is a single human
aspect.

* Yet, using confirmation bias metrics
we obtained comparable
performance results

* Therefore, we should further
investigate human aspects...

CHALMERS

(&%) UNIVERSITY OF GOTHENBURG

N

Version Control
Sysiem

f
/s

|

Issue
Management
System

[

\ format of an issue entry

N
key J create date | updaie datc| statusl requesi type
~

...................

__commitlog eniry | issue enfry
I

: COMMIT LOGS ISSUE LIST
I

I

I

I

| | Key values status # “cancelled"
| mustmatch | T T L
I

I

I

I

I

I

I

Y

file name| key | commit date

committer name

added lines

deleted lines

format of a commit log entry

Cognitive Biases in SE: Research Gap

Research Gap #1: _/

Is the observed phenomenon manifestation of the claimed
cognitive bias?

-

CHALMERS &%) UNIVERSITY OF GOTHENBURG

11

Cognitive Biases in SE: Research Gap

Proposed Solution: Triangulation

Confirmation of Results

Mediating process to
trigger cognitive bias X
must be similar in nature
both in SE experiment
and in the measurement

setup. 7

aims to trigger cognitive
bias X.
_

Devise a measurement set-up

from the literature, such that:
* mediating process to trigger

directly.

based on a psychology experiment

cognitive bias X is manipulated

y

: e Troatmend
(SE Experiment: Treatment

J

CHALMERS

(&%) UNIVERSITY OF GOTHENBURG

" Measurement Set-up to)
measure participants’
proneness to cognitive

_ bias X.)

12

Application of Proposed Solution

|
accepted at ICSE’20

Amsterdam & Delft, The Netherlands
ABSTRACT

In contemporary code review, the comments put by reviewers on a
specific code change are immediately visible to the other reviewers
involved. Could this visibility prime new reviewers’ attention (due
to the human’s proneness to availability bias), thus biasing the code
review outcome? In this study, we investigate this topic by con-
ducting a controlled experiment with 85 developers who perform
a code review and a psychological experiment. With the psycho-
logical experiment, we find that ~70% of participants are prone to
availability bias. However, when it comes to the code review, our
experiment results show that participants are primed only when
the existing code review comment is about a type of bug that is not
normally considered; when this comment is visible, participants are
more likely to find another occurrence of this type of bug. More-
over, this priming effect does not influence reviewers’ likelihood of
detecting other types of bugs. Our findings suggest that the current
code review practice is effective because existing review comments

Primers or Reminders?
The Effects of Existing Review Comments on Code Review

Davide Spadini Gul Calikli Alberto Bacchelli
d.spadini@sig.eu gul.calikli@gu.se bacchelli@ifi.uzh.ch
Software Improvement Group & Chalmers & University of Gothenburg University of Zurich
Delft University of Technology Gothenburg, Sweden Zurich, Switzerland

development teams by means of improved knowledge transfer,
awareness, and solutions to problems [3, 5, 27, 41].

In the code review type that is most common nowadays [7],
the author of a code change sends the change for review to peer
developers (also knowns as reviewers), before the change can be
integrated in production. Previous research on three popular open-
source software projects has found that three to five reviewers are
involved in each review [44]. Using a software review tool, the
reviewers and the author conduct an asynchronous online discus-
sion to collectively judge whether the proposed code change is
of sufficiently high quality and adheres to the guidelines of the
project. In widespread code review tools, reviewers’ comments are
immediately visible as they are written by their authors; could this
visibility bias the other reviewers’ judgment?

If we consider the peer review setting for scientific articles, re-
viewers normally judge (at least initially) the merit of the submitted
work independently from each other. The rationale behind such

CHALMERS (%)) UNIVERSITY OF GOTHENBURG

13

Contemporary Code Review

gerrit / gerrit-server/src/main/java/com/google/gerritiserver/change/PatchSetinserter.java
i Set;

......
;

Comments put by reviewers
on a specific code are SS0mog . Jan 20 2.5 P

B Dave Borowitz e ider he two constructor pilsa... Jan 28 3:19 PM

private bootenn senas il ijmmediately visible to other o
pr te Account.Id uploa private Accou uploader;
pr te BatchR pdat . . ste BatchRefUpdate batchRefUpdate;
reviewers involved.
€Inject fAssistedInject
public PatchSetiInserter(ChangeHooks hooks, public PatchSetiInserter(ChangeHooks hooks,
ReviewDb db, ReviewDb db,

("Could this visibility prime
reviewers’ attention (due to
proneness to availability What is
bias) and thus bias review availability bias?

_.outcome?

*"
UNIVERSITY OF GOTHENB! s— 14

N
T

CHALMERS

Avalilability Bias

What comes to mind quickly (i.e., easy to recall) is
deemed significant — sometimes incorrectly.

________ All available

-~ -)/' information
~
N
\
\‘ Information
" | know about

Information | need

. . /
to make a decision

/

7

________ Information
| saw yesterday

CHALMERS

UNIVERSITY OF GOTHENBURG 15

N
T

Some Examples of Availability Bias

« Asalient event that attracts one’s attention (e.g., divorces of
celebrities).

« Adramatic event one has witnessed or seen on news (e.g., a plane
crash on the news, seeing a burning car on the side of the road).

« Personal experiences (e.g., a judicial error that affects you
undermines your faith in justice system.)

» Recenty being exposed to some phenomena (e.g., watching a spy
movie and then seeing conspiracies everywhere).

ff/i'LL NEVER _
.\ﬂy AGMN!< Covered in
T N\ What actually the news

happens in the
world

SSTTRN

CHALMERS &%) UNIVERSITY OF GOTHENBURG 16

Availability Bias in Contemporary Code Review

gerrit / gerrit-server/src/main/java/com/google/gerritiserver/change/PatchSetinserter.java

yrivate PatchSet

P
pr
pr
pr
pr

patchSet;

ate ChangeMessage changeMessage;

Info sshinfo;

pPolicy validatePolicy
n draft;

an runHooks;

private boolean sendMail;
private Account.ld uploader;
private BatchRefUpdate batchRefUpdate;

eI

ject

eInj
public PatchSetiInserter(ChangeHooks hooks,

ReviewDb db,

CHALMERS

» ValidatePolicy.GERRIT;

(€

made comments prime

reviewers’ attention towards (a)
specific bug type(s) and thus
\affect review outcome?

ould visibility of previously

~

private PatchSet patchSet;

private ChangeMessage changeMessage;

+ te nfo sshinfo;
te datePolicy validatePolicy = ValidatePolicy.GERRIT;
te

Déedd o

Could such priming
result in
overlooking of
other bug types?

Some questions we asked
ourselves during the initiation

of this study...

®%Y) UNIVERSITY OF GOTHENBURG

o

4)

Are the current code review
settings robust to such
priming despite developers’
potential proneness to

availability bias?

J

How prone are
developers to
availability bias?

17

Availability Bias in Contemporary Code Review

gerrit / gerrit-server/src/main/java/com/google/gerritiserver/change/PatchSetinserter.java ﬂ & @ “'-9 &
X satchSet;

ge changeMessage;

shinfo sshinfo;

datePolicy validatePolicy = ValidatePolicy.GERRIT;

san draft;

private boolean runHooks;

» PatchSet

Stefan Beller
Dave Borowitz

Why do
Bec

Jan 28 2:55 PM
Jan 28 3:19 PM

med this

private boolean sendMail; » ¢ an 3 o ¥ 8

private Account.ld uploader; private Account.ld uploader;

private BatchRefUpdate batchRefUpdate; private BatchRefUpdate batchRefUpdate;

fInject 2 fAssistedInject

public PatchSetiInserter(ChangeHooks hooks, public PatchSetiInserter(ChangeHooks hooks,]
ReviewDb db, 2 ReviewDb db, L

How would this priming

Could such Is the current code review induced by DFEViOUSW made
L ti -
— : e Y settings robust to such comments about bugs afffect

Could visibility of previously overlooking of priming despite .

made comments prime other bug types? developers’ potential code review outcome?

reviewers’ attention towards proneness to availability

(a) specific bug type(s) and bias? T

thus affect review outcome? (DOES the priming \

effect change with
. respect to the bug
How prone are Taklng one Step

type (e.g., bugs
normally considered

Some questions we asked
ourselves during the
initiation of this study...

developers to
availability bias?

= back and we asked

vs. bugs normally not
considered)?

S —
—

®o |

———

CHALMERS UNIVERSITY OF GOTHENBURG 18

Research Questions

4)
RQ1: What is the effect of priming the reviewer with a

bug that is not normally considered?
. J

4)
RQ2: What is the effect of priming the reviewer with a

bug that is normally considered?
. J

CHALMERS

(&%) UNIVERSITY OF GOTHENBURG

N
T

—

Welcome
Page

Participants are not
informed about the
full purpose of the

experiment to avoid
demand

characteristics.

2

Experimental Design

Code Review Experiment

Participant’s

Demographics

- Gender & Age

- English proficiency
- Highest Education
- Experience in sw
development

- Experience in Java
programmig, etc.

Actual
Experiment

Treatment Group 1:
Codel, primed for Buga
Control Group 1: Code
1, not primed
Treatment Group2:
Code2, primed for Bugg
Control Group 2: Code
2, not primed.

Interruptions

during the
Experiment

Did the participants
get interrupted?
If so, for how long?

Follow-up
Questions

Show the bugs in the

code and ask if the
participant could detect
the bug ?

- If not, why?

- If yes, do they think

primed?

whether they were /

Welcome
Page

Warm-up
Session

/- Assessment of Proneness to Availability Bias

Actual
Psychology

Experiment

Measuring
Proneness to
Availability

_/

— Participants are told '
that experiment . .
aims to measure Design of measurement set-up is based on the psychology
developers’ : : : s 1
ey experiment by Gabrielcik and Fazio®.
demand 1
characteristics. Gabrielcik, A., & Fazio, R. H. (1984). Priming and frequency estimation: A strict test of the
\ availability heuristic. Personality and Social Psychology Bulletin, 10(1), 85—89
CHALMERS UNIVERSITY OF GOTHENBURG

20

Experimental Design

Code Review Experiment

(
Interruptions
Welcome Participant’s Actual _ Follow-up
‘ ‘ . during the ‘ .
Page Demographics Experiment Experigment Questions
_
~— Assessment of Proneness to Availability Bias ~
Actual Measuring
Welcome Warm-up ‘ Proneness to
‘ . ‘ Psychol
Page Session SYe pogy Availability
Experiment Bias
CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

21

Actual Code Review Experiment

RQ1: What is the effect of priming the reviewer with a bug that
is not normally considered (i.e., BUG,)?

2 bugs of type BUG, and 1 bug of type BUG,
Treatment Group 1 ;e injected into the code change. Control Group 1

@ ¢ « BUG,: Bugs that’s are NOT normally ‘ X

{ ® / considered (e.g., NullPointerException’) | @ |

| * BUGg: Bugs that’s are normally |

| ﬁ considered (e.g., Corner case bugs”) ﬁ
|

Prime with BUG, (i.e., a No reviewer comments
reviewer comment for one (i.e., no priming).

of the bugs of type BUG,

exists on code change)

CHALMERS UNIVERSITY OF GOTHENBURG 22

Actual Code Review Experiment

RQ2: What is the effect of priming the reviewer with a bug that
is normally considered (i.e., BUGg)?

2 bugs of type BUGgand 1 bug of type BUG,
Treatment Group 2 ;¢ injected into the code change. Control Group 2

@ ¢ « BUG,: Bugs that’s are NOT normally ‘ X

{ ® / considered (e.g., NullPointerException’) | @ |

| * BUGg: Bugs that’s are normally |

| ﬁ considered (e.g., Corner case bugs”) ﬁ
|

Prime with BUGg (i.e., a No reviewer comments
reviewer comment for one (i.e., no priming).

of the bugs of type BUG;

exists on code change)

CHALMERS UNIVERSITY OF GOTHENBURG 23

Actual Code Review Experiment: A Screenshot

Instructions

[x

For example:

For the scientific validity of this experiment, it is vital that the review task is taken very seriously.

Please assume that the code compiles and that the tests pass.

sre/main/javalorg/pack/ExerciseSumArray.java

| public claas ExerciseSumArray {

Given 2 Lists representing numbers (e.g., [3,4] = 34, [3,8] = 98),

4 calculate the sum of 2 Lists, and return the result in an List.

[1, 0, 0] + [4,0] = [1,4,0]

7 16,7) + (0] = [6,7]

We are now going to show you the code changes to review. The old version of the code is on the left, the new version is on the right.

« Like in real life, you should find as many defects as possible and you should spend as little time as possible on the review.
« Unlike in real life, we are not interested in maintainability or design issues, but only in correctness issues (bugs").

For example, a remark like the following is beyond the goal of the review: "Create a new class which is implemented by runnable interface that we can access multiple times." Instead, what we are interested in are the defects that
make the code not work as intended under all circumstances.

You will see that a previous reviewer already put a comment in line 23. You are now asked to continue with your review.

To add a review remark, click on the corresponding line number. To delete a review mark, click on it again and delete the remark's text.

sre/main/javalorg/pack/ExerciseSumArray.java

public class ExerciseSumArray {
in
Giver 37 numbers (e.g., [3,4) = 34, [9,8) = 38),

calculate the sum of 2 Lists, and return the result in an List.

2 Lists represen

For example:
(1, 0, 0] + [4,0]
[6,7) + [0] = [6,7)

w/

(1,4,0)

Sreenshot of the online
experiment given to
Treatment Group 2

public ArrayList<Integer> getSum(List<Integer> firstNumber, List<Integer> secondNumber){
ArraylList<Integer> result = new ArrayList<Integer>{);

int carry = 0;
Collections.reverse(firstNumber);

Collections.reverse(secondiusber);

for (int L = 0; (L < Math.max(firstNumber.size(), secondNumber.size())); L ++){
Integer firstValue = i < firstNumber.size() ? firstNumber.get(i) : null;
Integer secondValue = i < secondNumber.size() ? secondNumber.get(i} : null;

int res = firstValue + secondValue + ocarry;

carry = 0;
if (res > 10){

IQ Pat Smith: This is a bug related to a corner cases. The check should be >=_ otherwise it fails in assigning the carry (e.g. 29 + 1).

carry = 1;

res = res ¥ 10;
)
result.add(res);

}

if (carry >= 0)
result.add(carry);

Collections.reverse(result);
return result;

CHALMERS

&
TEoL

@L@ UNIVERSITY OF GOTHENBURG

24

Experimental Design

Code Review Experiment

(
Interruptions
Welcome Participant’s Actual) Follow-up
‘ ‘ . ‘ during the ‘ .
Page Demographics Experiment Experigment Questions
_
~— Assessment of Proneness to Availability Bias ~
Actual Measuring
Welcome q Warm-up - ‘ Proneness to
Page Session IEDSVCh.O logy Availability
xperiment Bias
\.
CHALMERS UNIVERSITY OF GOTHENBURG

25

Psychology Experiment: Warm-up Session

» Participants are asked to focus on a series of 20 words
flashing on the screen.

« Words are randomly selected from the English Dictionary.

* None of the words contain letter “T”.
« Each word flashes on the screen for 300 milliseconds.

* At the end of the session participants are asked to write 3
words they have seen.

(8%)) UNIVERSITY OF GOTHENBURG

CHALMERS

Experimental Design

Code Review Experiment

(
Interruptions
Welcome Participant’s Actual) Follow-up
‘ ‘ . ‘ during the .
Page Demographics Experiment Experigment ‘ Questions
_
~— Assessment of Proneness to Availability Bias ~
wel Warm-up Actual promentss o
elcome -
Page ‘ Session ‘ PsycthIogy ‘ Availability
Experiment Bias
\.
CHALMERS UNIVERSITY OF GOTHENBURG

28

Actual Psychology Experiment

« We show 2 series of 20 words, each.

« Words are randomly selected from the English
Dictionary.

e Each word contains at least one letter “T”.

« Each word flashes on the screen for 150 milliseconds.

« At the end each series, participants are asked to write 3
words they have seen.

(8%)) UNIVERSITY OF GOTHENBURG

CHALMERS

Experimental Design

Code Review Experiment

(
Interruptions
Welcome Participant’s Actual) Follow-up
‘ ‘ . ‘ d th ‘ :
Page Demographics Experiment Exl;)r;_rr]igme:t Questions
\.
~— Assessment of Proneness to Availability Bias
Actual Vieasuring
Welcome Warm-up Proneness to
Page ‘ Session ‘ Psychplogy ‘ Availability
Experiment Bia
\.
CHALMERS UNIVERSITY OF GOTHENBURG

30

Measuring Proneness to Availability Bias

Final task

Many more G

Many more E

Many more D

Many more |

Many more J

Many more W

In the whole English language...

... do more words contain G or A?

Same

... do more words contain E or Q?

Same

... do more words contain Dor T?

Same

... do more words contain /or A?

Same

... do more words contain Jor L?

Same

... do more words contain Wor U?

Same

Many more A

Many more Q

Many more T

Many more A

Many more L

Many more U

CHALMERS

UNIVERSITY OF GOTHENBURG

31

How Triangulation is employed in this study...

Code Review Experiment

Interruptions

Participant’s Actual ‘ : - Follow-up
BRI ‘ Demographics - Experiment Gl s Questions

Experiment

Assessment of Proneness to Availability Bias

Actual Measuring

Warm-up psvchol Proneness to

Welcome Page - Serslien ‘ sychology ‘ Availability
Experiment

Bias

Confirmation of Results

We devised a measurement set-up
based on a psychology experiment
from the literature, such that:

* mediating process (i.e., memory
priming) to trigger availability bias
is manipulated directly.

SE Experiment Measurement Set-up

CHALMERS () UNIVERSITY OF GOTHENBURG 32

How Triangulation is employed in this study...

Code Review Experiment

Interruptions Follow-up

Participant’s Actual ‘ . -
Welcome Page ‘ Demographics - Experiment durmg the Questions

Experiment

Assessment of Proneness to Availability Bias

Actual Measuring

Warm-up psvchol Proneness to

Welcome Page - Serslien ‘ sychology ‘ Availability
Experiment

Bias

Confirmation of Results

Mediating process to trigger
availability bias is memory
priming both in code review

experiment and in the setup for
the assessment of proneness
to availability bias.

SE Experiment Measurement Set-up

CHALMERS &%) UNIVERSITY OF GOTHENBURG

33

Findings

Primed Bug (NPE) Treatment Groupl Control Groupl Total h
found 13 2 15
not found 8 15 23
Odds Ratio: | 12.19 (2.19, 67.94)
p <0.001
Not Prj 1 Total
/ Finding 1: \ 28
Reviewers primed on a bug that is not 10
normally considered (e.g., NPE) are more
likely to find other occurrences of this type
of bugs. p <0.275
However, this does not prevent them from | Not Primed Bug
Mnding also other types of bugs. } S.E. Sig.
Intercept 0.704 4.734 —0.893l
IsPrimed 3.627 1.320 ** -1.199 1.073
TotalDuration 0.001 0.002 0.003 0.001 *
ProfDevExp 0.813 0.557 -0.503 0.554
ProgramPractice | -0.096 0.828 -0.243 0.736 *
Interruptions -1.752 0.758 * -0.715 0.444

5
¢q@_ 4
5oL

Odds ratio for capturing the
primed and not primed bug:

Primed Bug: NullPointerException (NPE)
Not primed Bug: Corner Case (CC)

Regression for the primed

and not primed bug:
Significance codes:
**% p < 0.001,

** < 0.01
*p< 0.1

34

Fin

dings

Primed Bug (CC) Treatment Group2 Control Group2 Total
found 10 8 18
not found 12 17 29
Odds Ratio: | 1.77 (0.54, 5.81) _ _
Odds ratio for capturing the
p < 0.344 . .
primed and not primed bug:
Not Primed Bug (NPE) | Treatment Group2 Control Group2 Total Primed Bug: Corner Case (CC)
. e Not primed Bug: NullPointerException
Finding 2: 13 29 P 8 p
. : : 1 (NPE)
Reviewers primed on a bug that is normally |° 8
considered (e.g., CC) perceive an influence, P
but are as likely as the other to find bugs of p<0.73
this type. -
Furthermore, primed participants did not Not Primed Bug
\capture fewer bugs of other type. te S.E. Sig.
Intercept 1.051 4.734 3.037e-01 | 2.568 Regression for the primed
IsPrimed 0.926 0722 | * |I 11.670e-01 | 7.74e-01 and not primed bug:
. Significance codes:
.001 .001 561e- .721e-01 -
TotalDuration 0.00 0.00 9.561e-05 | 3.721e-0 o < 0,001,
ProfDevExp 0.813 0.557 -1.061 7.353e-01 **p < 0.01
) *p< 0.05
ProgramPractice | 1.153 0.378 1.211 4.683e-01 | **
.P< 0.1
Interruptions -0.175 0.322 -0.715 0.444 35

5
¢q@_ 4
5oL

Conclusions

« GOAL.: To test the robustness of peer code review against reviewers’
potential proneness to availability bias.

 Methodology: Online experiment conducted with 85 participants.

 Psychology Experiment Results: Majority of the participants (~%70)
are prone to availability bias (median = 3.8, max = 4).

CHALMERS)) UNTVERSITY OF GOTHENBURG 36

« Code Review Experiment Results show that when reviewers are

Conclusions

primed for:

a bug that is normally considered:
« this does not affect their performance in finding bugs.

a bug that is normally NOT considered:
« this increases their likelihood of finding bugs of similar type,
 without affecting their performance in finding other types of bugs.

(

=T

Existing comments act as
(positive) reminders rather
than (negative) primers.

CHALMERS

(&%) UNIVERSITY OF GOTHENBURG

37

Cognitive Biases in SE: Research Gap

Research Gap #2: —

Mediating processes that manifest cognitive biases (e.g., What
happens in memory, working memory, etc.?)

Why is understanding
mediating processes
important?

-

CHALMERS &%) UNIVERSITY OF GOTHENBURG

38

Cognitive Biases in SE: Research Gap

Research Gap #2: —

Mediating processes that manifest cognitive biases (e.g., What
happens in memory, working memory, etc.?)

~
It can help development

of tools/techniques for

de-biasing.
I 5 Y,

-

CHALMERS | () UNIVERSITY OF GOTHENBURG 39

Back to Common Sources of Cognitive Biases

/_ Cognitive Limitations

Limitations in information
processing capacity (e.g.,

memory, working
Qemory).

>

Mental short-cuts called
"heuristics”

~

CHALMERS

(&%) UNIVERSITY OF GOTHENBURG

40

Bounded Rationality

Herbert A. Simon

o

Bounded rationality is the idea
that rationality is limited, when
iIndividuals make decisions, by the:

« tractability of the decision problem,

* cognitive limitations of the mind (e.g., |
memory, working memory), and

 time available to make the decision.

Cognitive biases are a "by-product” of human processing
limitations, resulting from a lack of appropriate mental
mechanisms or simply from a limited capacity for
information processing (e.g., memory, working memory).

o

~

/

CHALMERS

(&%) UNIVERSITY OF GOTHENBURG

41

Towards Understanding Working Memory...

ESEC/FSE 2019

Effects of Explicit Feature Traceability on

Program Comprehension

Jacob Kriiger
Otto-von-Guericke University
Magdeburg, Germany
jkrueger@ovgu.de

Thomas Leich
Harz University & METOP GmbH
Wernigerode & Magdeburg, Germany
tleich@hs-harz.de

ABSTRACT

Developers spend a substantial amount of their time with program
comprehension. To improve their comprehension and refresh their
memory, developers need to communicate with other developers,
read the documentation, and analyze the source code. Many studies
show that developers focus primarily on the source code and that
small improvements can have a strong impact. As such, it is crucial
to bring the code itself into a more comprehensible form. A partic-
ular technique for this purpose are explicit feature traces to easily
identify a program’s functionalities. To improve our empirical un-
derstanding about the effect of feature traces, we report an online
experiment with 49 professional software developers. We studied
the impact of explicit feature traces, namely annotations and decom-
position, on program comprehension and compared them to the
same code without traces. Besides this experiment, we also asked
our participants about their opinions in order to combine quanti-
tative and qualitative data. Our results indicate that, as opposed
to purely object-oriented code: (1) annotations can have positive
effects on program comprehension; (2) decomposition can have

Gul Calikli

Chalmers | University of Gothenburg Chalmers | University of Gothenburg
Gothenburg, Sweden
calikli@chalmers.se

Thorsten Berger

Gothenburg, Sweden
bergert@chalmers.se

Gunter Saake
Otto-von-Guericke University
Magdeburg, Germany
saake@ovgu.de

KEYWORDS

Program comprehension, Feature traceability, Software mainte-
nance, Separation of concerns

ACM Reference Format:

Jacob Kruiger, Giil Calikhy, Thorsten Berger, Thomas Leich, and Gunter Saake.
2019. Effects of Explicit Feature Traceability on Program Comprehension. In
Proceedings of the 27th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE 19),
August 26-30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3338906.3338968

1 INTRODUCTION

Developers often need to understand the purpose and the details of
specific parts of a codebase, which is a time-consuming and cogni-
tively demanding activity during software engineering [32, 59, 60].
A developer performs this activity, known as program comprehen-
sion, when they are new to a program or forgot details that are
required for their task [8, 30]. Consequently, to gain implicit knowl-
edge about a program, developers need to read and comprehend the

53

55

CHALMERS UNIVERSITY OF GOTHENBURG

42

Research Goal

 Numerous techniques to improve program
comprehension and trace features.

« Often heavyweight or separated from actual code.

« Can explicit feature traceability on code level support
program comprehension?
— Annotations

— Components

CHALMERS

Research Questions

r D
RQ1: What is the impact of feature traces on effectively

solving tasks?
\ y

r D
RQ2: What is the impact of feature traces on efficiently

solving tasks?
\ y

[RQ3: What is developers’ perception of feature traces?]

CHALMERS

(&%) UNIVERSITY OF GOTHENBURG

N
T

Methodology: Online Experiment

* 49 participants

» Three tasks on feature comprehension, three on bug
localization

 Measured time and correctness
* Questions on participants’ perception

Treatment Group 1 Treatment Group 2 Control Group

Feature traceability with Feature traceability with NO feature traceability
annotations components (object-oriented)

CHALMERS () UNIVERSITY OF GOTHENBURG 45

Results: Effectiveness (RQ1)

Feature Comprehension | Bug Localization

Task 1 Task 2 Task 6
1.00 Observation:
Feature traces improve feature ;
. (interaction) comprehension. .
g 19 Accepted twice for annotations.
:?;‘-0.50 B
~
0.25
0.00 . (1]
A C o0 A C OO A C OJ| A € 0O A C OO A C 00
Group
Incorrect . Correct A: Annotated C: Components 0O0: Object-Oriented
CHALMERS UNIVERSITY OF GOTHENBURG 46

Results: Effectiveness (RQ1)

Feature Comprehension | Bug Localization
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

1.00
| R 1 P N 1 O | |

Observation:

“1 Components hamper bug
localisation (i.e., bug in a feature
.4 interaction)

Repsonses

Accepted once. ;
0.2§\
0.00 1 - i
A C 00

A C 00 A C 00 A C o0 A C OO A C 00
Group
Incorrect . Correct A: Annotated C: Components 0O0: Object-Oriented
CHALMERS ‘ UNIVERSITY OF GOTHENBURG 47

Results: Efficiency (RQ2)

.)
Observation:
Explicit feature traces do not impact the analysis time.
\Not rejected. P
Task 1 Task 2 Task 3
A cC OO A CcC OO A C 0O
Und. Part. 10 10 9 13 12 15 16 14 15
Incl. Part. 10 38 9 12 11 13 14 14 13

Times (mins)
Min | 291 223 272|044 114 091 |0.70 0.67 0.52

Mean | 13.07 551 1227 | 1.72 326 330|273 226 1.84

Median | 11.23 403 9.75| 106 263 209|204 211 1.68

Max | 25.02 1273 2292 | 490 848 1196 | 729 4.70 3.90

SD| 834 359 754|143 234 314|178 130 0.89

Part.: Participants; Und.: Undisturbed; Incl.: Included; SD: Standard Deviation

CHALMERS

(81)) UNIVERSITY OF GOTHENBURG 48

Results: Perception (RQ3)

H NMaontinnad
“Yes, they did. In fact, without the annotations (provided
- that they are correct), it would have been significantly more -

difficult to understand which part of the code does what.”
Get picture ot code [o) 12

“[N]o, adding comments is a bad sign, it screams that code
is not self explanatory enough.”

Follow class names - 7 _

“On the one hand, it made the classes small and locating
possibly relevant code easy. On the other hand, interactions
were more difficult to spot, because | had to switch between
different classes.”

Comments — 0 4
Explicit locations - - 3

CHALMERS

Results: Perception (RQ3)

Mentioned
Response

Annatations __Components Object-Oriented

-

\
Observations: S strategy

Explicit feature traces: 12
e extend analysis strategies, 8
e are unproblematic to use, and 3

e are positively perceived. -

N / -

Code design
Positive 14 o) _
Unsure 2 2 —
Negative 2 3 -
Components 1 - 5
Comments — 0 4
Explicit locations - - 3

CHALMERS

(&%) UNIVERSITY OF GOTHENBURG

Conclusions

« Annotations have positive impact on program
comprehension.

« Components can negatively impact bug localization:

— Depends on the decomposition strategy

— Requires analysis at what point a component is useful
« Feature traces do not impact analysis efficiency.

* Feature traces are understandable and positively
perceived.

- Annotations seem proper to introduce feature traceability
In practice

CHALMERS

To Conclude ...

CHALMERS UNIVERSITY OF GOTHENBURG

Summary of the Talk

Cognitive Biases in SE: Research Gap

Research Gap #1: —

Is the observed phenomenon manifestation of the claimed
cognitive bias?

CHALMERS

HALN UNIVERSITY OF GOTHENBURG 1"
€«/00%

Cognitive Biases in SE: Research Gap

Research Gap #2:

Mediating processes that manifest cognitive biases (e.g., What
happens in memory, working memory, etc.?)

It can help
development of
tools/techniques for
de-biasing.

Why is understanding
mediating processes
important?

(

‘ y

’—\

CHALMERS UNIVERSITY OF GOTHENBUR! 38

CH

Application of Proposed Solution

accepted at ICSE’20
Primers or Reminders?

The Effects of Existing Review Comments on Code Review

Alberto Bacchelli
bacchelli@ifi.uzh.ch
University of Zurich
Zurich, Switzerland

Davide Spadini Giil Calikli
d.spadini@sig.eu gul.calikli@gu.se
Software Improvement Group & ~ Chalmers & University of Gothenburg
Delft University of Technology Gothenburg, Sweden
Amsterdam & Delft, The Netherlands

ABSTRACT development teams by means of improved knowledge transfer,
In contemporary code review, the comments put by reviewers ona awareness, and solutions to problems [3,5, 27, 41).

specific code change are immediately visible to the other reviewers I

i:vo]ved. Could lhgis visibility primeynew reviewers' attention (due the Cognitive Biases in SE: Research Gap

to the human’s proneness to availability bias), thus biasing the code ~ eVs i

review outcome? In this study, we investigate this topic by con- inte; Proposed Solution: Triangulation

ducting a controlled experiment with 85 developers who perform 50U

a code review and a psychological experiment. With the psycho- invd

logical experiment, we find that ~70% of participants are prone to revi

availability bias. However, when it comes to the code review, our ~ $ionf Devis s messuremen sev
experiment results show that participants are primed only when — Of S e i n) o
the existing code review comment is about a type of bug that is not PrOj] | riggor cogntive biss X + mediating process to trigger
normally considered; when thi tis visible, partici are immy | must be simiar in nature T

more likely to find another occurrence of this type of bug. More- and i the messurement
sewp

over, this priming effect does not influence reviewers’ likelihood of 1f
detecting other types of bugs. Our findings suggest that the current vie SE Experiment: Treatmen? Measurement Setup 1o
code review practice is effective because existing review comments wor} aims to trigger cognitive measure participants’

proneness to cognitive
bias X.

CcHaLmMERS ASITY OF GOTHENBIRG

Towards Understanding Working Memory...

ESEC/FSE 2019 Effects of Explicit Feature Traceability on

Program Comprehension

Jacob Kriiger Giil Calikly Thorsten Berger
Otto-von-Guericke University Chalmers | University of Gothenburg ~ Chalmers | University of Gothenburg

Magdeburg, Germany Gothenburg, Sweden Gothenburg, Sweden

jkrueger@ovgu.de calikli@chalmers.se bergert@chalmers.se

Thomas Leich
Harz University & METOP GmbH
Wernigerode & Magdeburg, Germany
tleich@hs-harz.de

Gunter Saake
Otto-von-Guericke University
Magdeburg, Germany
saake@ovgu.de

ABSTRACT KEYWORDS

Developers spend a substantial amount of their time with program Program comprehension, Feature traceability, Software mainte-
comprehension. To improve their comprehension and refresh their nance, Sej N)
memory, developers need to communicate with other developers, a1 Refer Bounded Rationality

read the documentation, and analyze the source code. Many studies
show that developers focus primarily on the source code and that Bounded rationality is the idea
small improvements can have a strong impact. As such, it is crucial Procesdingsd ot rationality is limited, when

to bring the code itself into a more comprehensible form. A partic- and Symposii individuals make decisions, by the:

Herbert A. Simon

CHALMERS UNIVERSITY OF GOTHENBURG

August 26-

h d . ility of the decision problem,

\ L INTH ° cognitive limitations of the mind (e.g.,
memory, working memory), and

Cognitive Limitations

Developers| h ' .
specific pas + time available to make the decision.
tively demd
A “"“l‘"_" Cognitive biases are a "by-product” of human processing
—_— :L‘;’l‘m‘: ‘;‘r:)‘ limitations, resulting from a lack of appropriate mental
mechanisms or simply from a limited capacity for
Limitations in information Mental short-cuts called edge about (e.g., memory, working memory).

processing capacity (e.q., “heuristics”

memory, working.
\ memory). J [—

TEoL

53

References

[3] A. Tang, "Software designers, are you biased?" in Proceedings of the 6th International Workshop on Sharing and
Reusing Architectural Knowledge. ACM, 2011, pp. 1-8.

[4] K. Mohan and R. Jain, "Using traceability to mitigate cognitive biases in software development,”" Communications of
the ACM, vol. 51, no. 9, pp. 110-114, 2008.

[5] K. Mohan, N. Kumar, and R. Benbunan-Fich, "Examining communication media selection and information
processing in software development traceability: An empirical investigation," IEEE Transactions on Professional
Communication, vol. 52, no. 1, pp. 17-39, 2009.

[6] T. K. Abdel-Hamid, K. Sengupta, and D. Ronan, "Software project control: An experimental investigation of judgment
with fallible information," IEEE Transactions on Software Engineering, vol. 19, no. 6, pp. 603-612, 1993.

[7] W. Stacy and]. MacMillan, "Cognitive bias in software engineering," Communications of the ACM, vol. 38, no. 6, pp.
57—63, 1995.

[8] G. Browne and V. Ramesh, "Improving information requirements determination: a cognitive perspective," Information
8 Management, vol. 39, no. 8, pp. 625-645, 2002.

[9]1 J. A. O. da Cunha, F. Q. da Silva, H. P. de Moura, and F. J. Vasconcellos, "Decision-making in software project
management: A qualitative case study of a private organization,” in Proceedings of the 9th International Workshop on
Cooperative and Human Aspects of Software Engineering. ACM, 2016, pp. 26-32.

[10] J. Parsons and C. Saunders, "Cognitive heuristics in software engineering applying and extending anchoring and
adjustment to artifact reuse," IEEE Transactions on Software Engineering, vol. 30, no. 12, pp. 873-888, 2004.

[11] C. Mair and M. Shepperd, "Human judgement and software metrics: Vision for the future," in Proceedings
of the 2nd international workshop on emerging trends in software metrics. ACM, 2011, pp. 81-84.

[12] K. A. De Graaf, P. Liang, A. Tang, and H. Van Vliet, "The impact of prior knowledge on searching in
software documentation,” in Proceedings of the 2014 ACM symposium on Document engineering. ACM,
2014, pp. 189-198.

[13] R. Jain,]. Muro, and K. Mohan, "A cognitive perspective on pair programming,” AMCIS 2006
Proceedings, p. 444, 2006.

[14]]. A. O. G. da Cunha and H. P. de Moura, "Towards a substantive theory of project decisions in software
development projectbased organizations: A cross-case analysis of it organizations from brazil and portugal,”
in Information Systems and Technologies (CISTI), 2015 10th Iberian Conference on. IEEE, 2015, pp. 1—6.
[15] G. Calikli, A. Bener, B. Caglayan, and A. T. Misirli, "Modeling human aspects to enhance software quality
management,” in Thirty Third International Conference on Information Systems, 2012.

CHALMERS &%) UNIVERSITY OF GOTHENBURG

References

[16] M. Nurminen, P. Suominen, S. Ayramo, and T. Karkkainen, "Applying semiautomatic generation of
conceptual models to decision support systems domain," in IASTED International Con— ference on

Software Engineering (SE 2009). ACTA Press, 2009.

[17] G. Calikli and A. Bener, "Empirical analyses of the factors affecting confirmation bias and the
effects of confirmation bias on software developer/tester performance," in Proceedings of the 6th
International Conference on Predictive Models in Software Engineering. ACM, 2010, p. 10. G. Calikli,
A. Bener, and B. Arslan

[18] L. M. Leventhal, B. M. Teasley, D. S. Rohlman, and K. Instone, "Positive test bias in software
testing among professionals: A review," in International Conference on Human—Computer Interaction.
Springer, 1993, pp. 210—218.

[19] E. D. Smith, Y.]. Son, M. Piattelli-Palmarini, and A. Terry Bahill, ’Ameliorating mental mistakes in
tradeoff studies," Systems Eh— giheerihg, vol. 10, no. 3, pp. 222—240, 2007.

[20] G. Calikli, A. Bener, T. Aytac, and O. Bozcan, "Towards a metric suite proposal to quantify
confirmation biases of developers," in Empirical Software Engineering and Measurement, 2013
ACM/IEEE International Symposium on. IEEE, 2013, pp. 363—372.

[21] F. Shull, "Engineering values: From architecture games to agile requirements," IEEE Software,
vol. 30, no. 2, pp. 2—6, 2013.

CHALMERS

