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Cognitive Biases

• Cognitive biases are systematic deviations of 
human mind from optimal reasoning that 
produce errors in judgement.
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Cognitive Biases
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Amos Tversky

Daniel Kahneman

* This article originally appeared in Science, vol. 185, 1974.



Cognitive Biases
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Over 200 cognitive biases
have been identified in 

psychology, sociology and 
management research[1,2]. 

Source: Wikipedia, “List of Cogitive Biases”, 
https://en.wikipedia.org/wiki/List_of_cognitive_biases



Common Sources of Cognitive Biases
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Limitations in information 
processing capacity (e.g., 
memory, working
memory).

lead to 

Mental short-cuts called
”heuristics”

Cognitive Limitations

Emotions facilitate memory: 
When we have an emotional 
experience, emotional center of the 
brain “amygdala” up-regulates the 
hippocampus, which has a major 
role in memory. 

Emotions

Individual Motivations

Social Pressure



Cognitive Biases in Software Engineering
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• Software is designed and developed by people.



Cognitive Biases in Software Engineering
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• There is involvement of human 
judgement in every stage of 
Software Development Life 
Cycle (SDLC). 



Some Examples for Studies in Cognitive Biases in SE
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[3, 10]

[4, 5]

quality management [6, 9]

[7, 8]

Anchoring & Adjustment: Making 
estimates by starting from an initial value 
that is adjusted to yield the final answer. 
Anchoring occurs when adjustments are 
insufficient.   

[8]

[11]

[8, 11]

Overconfidence:Tendency to be more 
confident in one’s own abilities.

[9, 12, 14]

[4]

[7, 13]

[7]

[12]
project management

Availability:Tendency to deem what is 
easy to recall as being significant.

[15]

[7]

[16]

[16]

[16]

Representativeness: Assessing the 
probability of an event or item based on 
the similatitie of the features to the 
parent population.[7, 17, 18, 20, 21]

[12]

[19]

Confirmation Bias: Favoring information 
that confirms our beliefs.

For further information à “R. Mohanani, I. Salman, B. Turhan, P. Rodríguez and P. Ralph, "Cognitive Biases in 
Software Engineering: A Systematic Mapping Study," in IEEE Transactions on Software Engineering.”



My Previous Research: Confirmation Bias in SE
• Confirmation Bias: Tendency to find evidence that 

supports one’s beliefs rather than finding evidence 
refuting them.

• Due to confirmation bias, developers perform unit tests 
to make their program work rather than to break their 
code*.
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Formation of the Metrics Repository:
• consists confirmation bias values of 199 

software engineers:
• 129 developers
• 26 testers
• 32 analysts
• 12 project managers

Prepare 
confirmation 

bias tests

Prepare/
update 

metrics set

Administer 
confirmation 

bias tests

Analyze 
Test 

Results

Update 
metrics 

set?

Final 
metrics 

set

YES

NO

Formation of a Metrics Set:  

*L. M. Leventhal, B. M. Teasley, D. S. Rohlman, and K. Instone, ”Positive test bias in software testing 
among professionals: A review," in International Conference on Human—Computer Interaction. Springer, 
1993, pp. 210—218.



• Algorithm: Naive Bayes
• Input data: static code, churn, 

confirmation bias metrics
• Pre-processing: under-sampling
• 10x10 cross validation

My Previous Research: Confirmation Bias in SE

Building Defect Prediction Models:  

Results Summary:
• Confirmation Bias is a single human 

aspect.
• Yet, using confirmation bias metrics 

we obtained comparable 
performance results

• Therefore, we should further 
investigate human aspects...



Cognitive Biases in SE: Research Gap
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Is the observed phenomenon manifestation of the claimed 
cognitive bias?

Research Gap #1:



Cognitive Biases in SE: Research Gap
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Proposed Solution: Triangulation

SE Experiment: Treatment 
aims to trigger cognitive 
bias X.

Measurement Set-up to 
measure participants’ 
proneness to cognitive 
bias X. 

Confirmation of Results
Devise a measurement set-up 
based on a psychology experiment 
from the literature, such that:
• mediating process to trigger 

cognitive bias X is manipulated 
directly.  

Mediating process to 
trigger cognitive bias X 
must be similar in nature 
both in SE experiment 
and in the measurement 
setup.



Application of Proposed Solution
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accepted at ICSE’20



Contemporary Code Review
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Comments put by reviewers 
on a specific code are 
immediately visible to other 
reviewers involved.

Could this visibility prime 
reviewers’ attention (due to 
proneness to availability 
bias) and thus bias review 
outcome?

What is 
availability bias? 



Availability Bias

What comes to mind quickly (i.e., easy to recall) is 
deemed significant – sometimes incorrectly.
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Information I need 
to make a decision

All available 
information

Information 
I know about

Information 
I saw yesterday



Some Examples of Availability Bias
• A salient event that attracts one’s attention (e.g., divorces of 

celebrities).

• A dramatic event one has witnessed or seen on news (e.g., a plane 
crash on the news, seeing a burning car on the side of the road).

• Personal experiences (e.g., a judicial error that affects you 
undermines your faith in justice system.)

• Recenty being exposed to some phenomena (e.g., watching a spy 
movie and then seeing conspiracies everywhere).

16

Covered in 
the newsWhat actually 

happens in the 
world



Availability Bias in Contemporary Code Review
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Could visibility of previously 
made comments prime 
reviewers’ attention towards (a) 
specific bug type(s) and thus 
affect review outcome?

Are the current code review 
settings robust to such 
priming despite developers’ 
potential proneness to 
availability bias?

Some questions we asked 
ourselves during the initiation 
of this study…

How prone are 
developers to 
availability bias?

Could such priming 
result in 
overlooking of 
other bug types?



Availability Bias in Contemporary Code Review
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Could visibility of previously 
made comments prime 
reviewers’ attention towards 
(a) specific bug type(s) and 
thus affect review outcome?

Is the current code review 
settings robust to such 
priming despite 
developers’ potential 
proneness to availability 
bias?

Some questions we asked 
ourselves during the 
initiation of this study…

How prone are 
developers to 
availability bias?

Could such 
priming result in 
overlooking of 
other bug types?

Taking one step 
back and we asked:

How would this priming 
induced by previously made 
comments about bugs afffect 
code review outcome? 

Does the priming 
effect change with 
respect to the bug 
type (e.g., bugs 
normally considered 
vs. bugs normally not 
considered)?



Research Questions
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RQ1: What is the effect of priming the reviewer with a 
bug that is not normally considered? 

RQ2: What is the effect of priming the reviewer with a 
bug that is normally considered? 



Experimental Design
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Code Review Experiment

Assessment of Proneness to Availability Bias

Welcome 
Page

Participant’s 
Demographics

Actual 
Experiment

Interruptions 
during the 

Experiment

Follow-up 
Questions

Participants are not 
informed about the 
full purpose of the 
experiment to avoid 
demand 
characteristics.

- Gender & Age
- English proficiency
- Highest Education
- Experience in sw   
development
- Experience in Java 
programmig, etc.   

Treatment Group 1: 
Code1, primed for BugA
Control Group 1: Code 
1, not primed
Treatment Group2: 
Code2, primed for BugB
Control Group 2: Code 
2, not primed.

Did the participants
get interrupted?
If so, for how long?

Show the bugs in the 
code and ask if the 
participant could detect 
the bug ?
- If not, why?
- If yes,  do they think 
whether they were 
primed?

Welcome 
Page

Warm-up 
Session

Actual 
Psychology  
Experiment

Measuring 
Proneness to 
Availability 

Bias
Participants are told 
that experiment 
aims to measure 
developers’ 
attention to avoid 
demand 
characteristics.

Design of measurement set-up is based on the psychology 
experiment by Gabrielcik and Fazio1.
1 Gabrielcik, A., & Fazio, R. H. (1984). Priming and frequency estimation: A strict test of the 
availability heuristic. Personality and Social Psychology Bulletin, 10(1), 85–89



Experimental Design
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Code Review Experiment

Assessment of Proneness to Availability Bias

Welcome 
Page

Participant’s 
Demographics

Actual 
Experiment

Interruptions 
during the 

Experiment

Follow-up 
Questions

Welcome 
Page

Warm-up 
Session

Actual 
Psychology  
Experiment

Measuring 
Proneness to 
Availability 

Bias



Actual Code Review Experiment
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RQ1: What is the effect of priming the reviewer with a bug that 
is not normally considered (i.e., BUGA)? 

Treatment Group 1 Control Group 1 
2 bugs of type BUGA and 1 bug of type BUGB
are injected into the code change. 
• BUGA: Bugs that’s are NOT normally 

considered (e.g., NullPointerException*)
• BUGB: Bugs that’s are normally 

considered (e.g., Corner case bugs*)

Prime with BUGA  (i.e., a 
reviewer comment for one 
of the bugs of type BUGA
exists on code change) 

No reviewer comments 
(i.e., no priming).



Actual Code Review Experiment
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RQ2: What is the effect of priming the reviewer with a bug that 
is normally considered (i.e., BUGB)? 

Treatment Group 2 Control Group 2 
2 bugs of type BUGBand 1 bug of type BUGA
are injected into the code change. 
• BUGA: Bugs that’s are NOT normally 

considered (e.g., NullPointerException*)
• BUGB: Bugs that’s are normally 

considered (e.g., Corner case bugs*)

Prime with BUGB (i.e., a 
reviewer comment for one 
of the bugs of type BUGB
exists on code change) 

No reviewer comments 
(i.e., no priming).



Actual Code Review Experiment: A Screenshot
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Sreenshot of the online 
experiment given to 
Treatment Group 2



Experimental Design
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Code Review Experiment

Assessment of Proneness to Availability Bias

Welcome 
Page

Participant’s 
Demographics

Actual 
Experiment

Interruptions 
during the 

Experiment

Follow-up 
Questions

Welcome 
Page

Warm-up 
Session

Actual 
Psychology  
Experiment

Measuring 
Proneness to 
Availability 

Bias



Psychology Experiment: Warm-up Session

• Participants are asked to focus on a series of 20 words
flashing on the screen.

• Words are randomly selected from the English Dictionary.
• None of the words contain letter “T”.
• Each word flashes on the screen for 300 milliseconds.

• At the end of the session participants are asked to write 3 
words they have seen.

26



Experimental Design
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Code Review Experiment

Assessment of Proneness to Availability Bias

Welcome 
Page

Participant’s 
Demographics

Actual 
Experiment

Interruptions 
during the 

Experiment

Follow-up 
Questions

Welcome 
Page

Warm-up 
Session

Actual 
Psychology  
Experiment

Measuring 
Proneness to 
Availability 

Bias



Actual Psychology Experiment

• We show 2 series of 20 words, each.

• Words are randomly selected from the English 
Dictionary.

• Each word contains at least one letter “T”.

• Each word flashes on the screen for 150 milliseconds.

• At the end each series, participants are asked to write 3 
words they have seen.
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Experimental Design
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Code Review Experiment

Assessment of Proneness to Availability Bias

Welcome 
Page

Participant’s 
Demographics

Actual 
Experiment

Interruptions 
during the 

Experiment

Follow-up 
Questions

Welcome 
Page

Warm-up 
Session

Actual 
Psychology  
Experiment

Measuring 
Proneness to 
Availability 

Bias



Measuring Proneness to Availability Bias
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How Triangulation is employed in this study…
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Code Review Experiment

Assessment of Proneness to Availability Bias

Welcome Page
Participant’s 

Demographics
Actual 

Experiment

Interruptions 
during the 

Experiment

Follow-up 
Questions

Welcome Page
Warm-up 
Session

Actual 
Psychology  
Experiment

Measuring 
Proneness to 
Availability 

Bias

SE Experiment Measurement Set-up

Confirmation of Results

We devised a measurement set-up 
based on a psychology experiment 
from the literature, such that:
• mediating process (i.e., memory 

priming) to trigger availability bias 
is manipulated directly.  



How Triangulation is employed in this study…
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Code Review Experiment

Assessment of Proneness to Availability Bias

Welcome Page
Participant’s 

Demographics
Actual 

Experiment

Interruptions 
during the 

Experiment

Follow-up 
Questions

Welcome Page
Warm-up 
Session

Actual 
Psychology  
Experiment

Measuring 
Proneness to 
Availability 

Bias

SE Experiment Measurement Set-up

Confirmation of Results

Mediating process to trigger 
availability bias is memory 
priming both in code review 
experiment and in the setup for 
the  assessment of proneness 
to availability bias.



Findings
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Primed Bug (NPE) Treatment Group1 Control Group1 Total

found 13 2 15

not found 8 15 23

Odds Ratio: 12.19 (2.19, 67.94)

p < 0.001

Not Primed Bug (CC) Treatment Group1 Control Group1 Total

found 14 14 28

not found 7 3 10

Odds Ratio: 0.43 (0.09, 2.00)

p < 0.275

Odds ratio for capturing the 
primed and not primed bug:
Primed Bug: NullPointerException (NPE)
Not primed Bug: Corner Case (CC) 

Primed Bug Not Primed Bug

Estimate S.E. Sig. Estimate S.E. Sig.

Intercept 0.704 4.734 -0.893

IsPrimed 3.627 1.320 ** -1.199 1.073

TotalDuration 0.001 0.002 0.003 0.001 *

ProfDevExp 0.813 0.557 -0.503 0.554

ProgramPractice -0.096 0.828 -0.243 0.736 *

….

Interruptions -1.752 0.758 * -0.715 0.444

Regression for the primed 
and not primed bug:
Significance codes: 
*** p < 0.001, 

** p <  0.01
* p <  0.1

Finding 1: 
Reviewers primed on a bug that is not 
normally considered (e.g., NPE) are more 
likely to find other occurrences of this type 
of bugs. 

However, this does not prevent them from 
finding also other types of bugs.



Findings
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Primed Bug (CC) Treatment Group2 Control Group2 Total

found 10 8 18

not found 12 17 29

Odds Ratio: 1.77 (0.54, 5.81)

p < 0.344

Not Primed Bug (NPE) Treatment Group2 Control Group2 Total

found 13 13 29

not found 9 9 18

Odds Ratio: 0.81 (0.25, 2.64)

p < 0.73

Odds ratio for capturing the 
primed and not primed bug:
Primed Bug: Corner Case (CC) 
Not primed Bug:  NullPointerException 
(NPE)

Primed Bug Not Primed Bug

Estimate S.E. Sig. Estimate S.E. Sig.

Intercept 1.051 4.734 3.037e-01 2.568

IsPrimed 0.926 0.722 * -1.670e-01 7.74e-01

TotalDuration 0.001 0.001 . 9.561e-05 3.721e-01

ProfDevExp 0.813 0.557 -1.061 7.353e-01

ProgramPractice 1.153 0.378 1.211 4.683e-01 **

….

Interruptions -0.175 0.322 -0.715 0.444

Regression for the primed 
and not primed bug:
Significance codes: 
*** p < 0.001, 

** p <  0.01
* p <  0.05
. P <  0.1

Finding 2: 
Reviewers primed on a bug that is normally 
considered (e.g., CC) perceive an influence, 
but are as likely as the other to find bugs of 
this type. 

Furthermore, primed participants did not 
capture fewer bugs of other type.



Conclusions
• GOAL: To test the robustness of peer code review against reviewers’

potential proneness to availability bias.
• Methodology: Online experiment conducted with 85 participants.

• Psychology Experiment Results: Majority of the participants (~%70) 
are prone to availability bias (median = 3.8, max = 4).
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Conclusions
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• Code Review Experiment Results show that when reviewers are 
primed for:
– a bug that is normally considered:

• this does not affect their performance in finding bugs.
– a bug that is normally NOT considered:

• this increases their likelihood of finding bugs of similar type,
• without affecting their performance in finding other types of bugs. 

Existing comments act as 
(positive) reminders rather 

than (negative) primers.



Cognitive Biases in SE: Research Gap
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Mediating processes that manifest cognitive biases (e.g., What 
happens in memory, working memory, etc.?)

Research Gap #2:

Why is understanding 
mediating processes 
important?



Cognitive Biases in SE: Research Gap
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Mediating processes that manifest cognitive biases (e.g., What 
happens in memory, working memory, etc.?)

Research Gap #2:

It can help development 
of tools/techniques for 
de-biasing. 



Back to Common Sources of Cognitive Biases
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Limitations in information 
processing capacity (e.g., 
memory, working
memory).

lead to 

Mental short-cuts called
”heuristics”

Cognitive Limitations

Emotions facilitate memory: 
When we have an emotional 
experience, emotional center of the 
brain “amygdala” up-regulates the 
hippocampus, which has a major 
role in memory. 

Emotions

Individual Motivations

Social Pressure



Bounded Rationality

Bounded rationality is the idea 
that rationality is limited, when 
individuals make decisions, by the:
• tractability of the decision problem,
• cognitive limitations of the mind (e.g., 

memory, working memory), and 
• time available to make the decision.

41

Cognitive biases are a "by-product" of human processing
limitations, resulting from a lack of appropriate mental 
mechanisms or simply from a limited capacity for 
information processing (e.g., memory, working memory).

Herbert A. Simon



Towards Understanding Working Memory…
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ESEC/FSE 2019



Research Goal

• Numerous techniques to improve program 
comprehension and trace features.

• Often heavyweight or separated from actual code.

• Can explicit feature traceability on code level support 
program comprehension?
– Annotations
– Components

43



Research Questions
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RQ1: What is the impact of feature traces on effectively 
solving tasks?

RQ2: What is the impact of feature traces on efficiently 
solving tasks?

RQ3: What is developers’ perception of feature traces?



Methodology: Online Experiment

• 49 participants
• Three tasks on feature comprehension, three on bug 

localization
• Measured time and correctness
• Questions on participants’ perception

45

Treatment Group 1 Control Group  Treatment Group 2

Feature traceability with 
annotations

Feature traceability with 
components

NO feature traceability 
(object-oriented)



Results: Effectiveness (RQ1)
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Observation: 
Feature traces improve feature 
(interaction) comprehension.

Accepted twice for annotations.



Results: Effectiveness (RQ1)
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Observation: 
Components hamper bug 
localisation (i.e., bug in a feature 
interaction)

Accepted once.



Results: Efficiency (RQ2)
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Observation: 
Explicit feature traces do not impact the analysis time. 

Not rejected.



Results: Perception (RQ3)
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“Yes, they did. In fact, without the annotations (provided 
that they are correct), it would have been significantly more 
difficult to understand which part of the code does what.”

“[N]o, adding comments is a bad sign, it screams that code 
is not self explanatory enough.”

“On the one hand, it made the classes small and locating 
possibly relevant code easy. On the other hand, interactions 
were more difficult to spot, because I had to switch between 
different classes.”



Results: Perception (RQ3)

50

Observations: 
Explicit feature traces:
• extend analysis strategies,
• are unproblematic to use, and
• are positively perceived.



Conclusions

• Annotations have positive impact on program 
comprehension.

• Components can negatively impact bug localization:

– Depends on the decomposition strategy

– Requires analysis at what point a component is useful

• Feature traces do not impact analysis efficiency.

• Feature traces are understandable and positively 
perceived.

à Annotations seem proper to introduce feature traceability 
in practice

51



To Conclude …
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Summary of the Talk
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