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Abstract—Improper Input Validation (IIV) is a software vul-
nerability that occurs when a system does not safely handle input
data. Even though IIV is easy to detect and fix, it still commonly
happens in practice.

In this paper, we study to what extent developers can detect IIV
and investigate underlying reasons. This knowledge is essential
to better understand how to support developers in creating
secure software systems. We conduct an online experiment with
146 participants, of which 105 report at least three years of
professional software development experience. Our results show
that the existence of a visible attack scenario facilitates the
detection of IIV vulnerabilities and that a significant portion
of developers who did not find the vulnerability initially could
identify it when warned about its existence. Yet, a total of 60
participants could not detect the vulnerability even after the
warning. Other factors, such as the frequency with which the
participants perform code reviews, influence the detection of IIV.
Data and materials: https://doi.org/10.5281/zenodo.3996696

I. INTRODUCTION

A software vulnerability is “a design flaw or an imple-
mentation bug that allows an attacker to cause harm to the
stakeholders of an application” [1]. To avoid vulnerabilities,
much effort has been spent on making web applications
more secure [2]–[4], and organizations are shifting security
to earlier stages of software development, such as during code
review [5]. Nevertheless, dangerous vulnerabilities are still
routinely discovered [6].

One of the most prevalent and high-risk vulnerabilities to
this day is Improper Input Validation (IIV) [3], [7]. This
vulnerability is the root cause of more than half of the top
ten vulnerabilities in the CWE Top 25 list [3] and is present
when a software system does not ensure that the received input
can be processed safely and correctly.

From a software engineering standpoint, an interesting pe-
culiarity of IIV is that it does not require hard-core security
expertise to be caught and avoided [8]. So, why do developers
not recognize Improper Input Validation? Answering this is
central to understand how to support developers in building
more secure software systems.

One possible answer is that most software developers do
not possess even a very basic knowledge of software security:
Several surveyed security experts believe that less than half of
the developers can spot security holes [5]. Another possible
answer is the lack of a proper attitude towards security in
information systems professionals [9]. Xie et al. [10] sug-
gest that software developers have general knowledge and

awareness of software security and point out the gap between
developers’ security knowledge and their behaviors. According
to the authors’ findings, developers do not perform secure
development due to factors related to their mindset, such
as relying on third parties (e.g., security experts), and other
phases of the development life cycle (e.g., design phase),
besides external constraints (e.g., deadlines, budget, customer
demands, regulations). These studies report the perception of
developers and security engineers, which may or may not
reflect the real situation. Further studies are needed to verify
and complement these claims.

In this paper, we present the design and execution of an
online experiment we devised to investigate to what extent
developers can(not) detect IIV and the underlying reasons. We
hypothesize that the visibility of a traditional attack scenario
(specifically, a SQL Injection pattern) affects whether devel-
opers can detect an IIV. Attack scenarios for SQL Injection
(SQLI) are readily available even in textbooks [11], [12] and
popular culture [13], whereas for the detection of other IIV
vulnerabilities, developers need to discover attack scenarios
and assess their possibility to occur themselves. Based on the
aforementioned previous studies [9], [10], we also investigate
the effect of informing developers about the existence of a
vulnerability (i.e., prompting) on its detection. Inspired by
previous work [14]–[16] on how prompting facilitates secure
password storage, we hypothesize that some developers have
the knowledge to find an IIV but need to be prompted to focus
on it. Finally, we also investigate what the developers report
as the reasons why they found or not these vulnerabilities.

We set up our experiment as an online study composed
of a code review task, a survey, and a repeated review after
prompting. We received valid responses from 146 participants,
82.5% of whom report to be software developers, and 105 have
three or more years of professional programming experience.
Our main findings include: (1) The visibility of an attack
scenario greatly facilitates the detection of IIV; (2) prompting
has an effect on IIV detection, yet many participants cannot
detect an IIV without a traditional attack scenario; (3) security
awareness during code development and frequency of code
review play a role in the detection of IIV.

Based on our findings, we discuss implications and outline
future avenues for research and practice.
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II. RELATED WORK

The study of software vulnerabilities and their developer-
related factors is a growing area of research in the Software
Engineering (SE) research community (e.g., [17]–[20]).
Improper Input Validation. Among vulnerabilities, IIVs are
prevalent and well-known. Scholte et al. [21] investigated the
evolution of IIV vulnerabilities over a decade with a specific
focus on SQLI and cross-site scripting. The authors found that
the attack surface of SQLI is much smaller than for cross-
site scripting. The attack surface is the set of points on the
boundary of a system or an environment where an attacker can
try to enter, cause an effect on, or extract data from it [22]. Our
study aims to investigate the extent to which developers detect
IIV vulnerabilities. Therefore, we focus on SQLI, which has
a relatively small attack surface, hence is easier to detect, and
another IIV vulnerability, namely Improper Input Validation
for specified Quantity Input (IVQI), which also has a small
attack surface but does not have such a visible attack scenario.
Why developers do not spot vulnerabilities. Regarding the
underlying causes of why developers introduce and cannot rec-
ognize security issues, the study by Woon and Kankanhalli [9]
is based on the claim that Information Systems (IS) pro-
fessionals’ intention to practice secure development, which
somehow relates to their mindset, is a primary cause for
vulnerabilities. The authors investigated factors that are likely
to impact IS professionals’ intention to secure development
through a survey conducted with 184 IS professionals. They
found that attitude (determined by the usefulness of security
practices to the final software product and IS professionals’
career as well as subjective norms) significantly impacts the
intention to practice secure development. Xie et al. [10]
reported gaps between developers’ knowledge and the actual
practices and behaviors as underlying causes for software
vulnerabilities. Xie et al. point out the developers’ mindset
as a main underlying cause for software vulnerabilities. We
also focus on this aspect and investigate whether warning
developers about the existence of a vulnerability in the code
enable its detection. Findings by Xie et al. [10] are based
on semi-structured interviews that authors conducted with 15
developers, a relatively small sample size. We conducted our
study with 146 participants, 57% of whom currently work
as a developer, and overall 71% of them work as software
practitioners. Our study collects and investigates qualitative
and quantitative data while participants are in action during
code review through an experiment and as data reflecting
participants’ perspectives that are collected through surveys.
Code Review for Vulnerability Detection. Previous re-
search [23]–[25] found that more code reviews and reviewers
have positive effects on secure software development, whereas
the results on the Chromium project by Meneely et al. [26]
contradict these findings. In a study with more than three
thousand Open Source Software (OSS) projects, Thompson
and Wagner [27] concluded that code review reduces security
bugs. Another study on OSS projects [28] found that code
review can identify common types of vulnerabilities. On

the other hand, Edmundson et al. [29] conducted a study
to investigate the effectiveness of a security-focused manual
code review of web applications containing SQL injections.
The authors’ results indicate relatively low effectiveness in
vulnerability detection. In line with these results, di Biase et
al. [30] found that approximately only 1% of Chromium’s
review comments are about potential security flaws. While
these studies [27]–[30] mainly focus on the effectiveness of
code review on vulnerability detection, our study investigates
whether developers can(not) detect vulnerabilities (specifically
IIV) during code review and the underlying causes with a
focus on developers’ knowledge and mindset.

III. METHODOLOGY

Overall, our research aims to understand to what extent
developers can(not) detect IIV vulnerabilities and why. We
base our study on an online experiment with several steps
(summarized by Figure 1) that we devised to collect different
types of evidence as well as self-reported data.

A. Research Questions

We structured our study in two main research questions.
With the first research question, we investigate the extent to
which developers can detect an IIV vulnerability as well as
the effect of the visibility of a traditional (i.e., textbook) attack
scenario for an IIV vulnerability on its detection.

RQ1. Do developers detect Improper Input Validation
(IIV) vulnerabilities during code review?

We organize our research question as follows:
RQ1.1. To what extent do developers detect IIV vulnerabili-

ties during code review?
RQ1.2. What is the effect of the visibility of a traditional

attack scenario for an IIV vulnerability on its detection
during code review?

In particular, we test the following hypothesis for RQ1.2:
H01: The visibility of a traditional attack scenario for an IIV

vulnerability does not affect its detection during code review.
Woon and Kankanhalli [9] and Xie et al. [10] argued that

the mindset might be the reason why developers do (not)
detect vulnerabilities: Developers may not pay attention to
vulnerabilities because it is not their normal role/practice. We
test this hypothesis for IIV vulnerabilities. To do so, we take
inspiration from the studies by Naiakshina et al. [14]–[16],
who investigated the effects of prompting on the implementa-
tion of secure password storage. After participants complete
their first review and answer questions about vulnerabilities,
we warn them about the existence of a vulnerability in the code
they just reviewed and ask them to reconsider their review
if they missed it. This way, we investigate whether warning
developers (who missed the IIV) about a vulnerability’s ex-
istence affects their ability to detect the IIV. Therefore, our
second research question is:
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Figure 1. Design and flow of the online experiment.

RQ2. What is the effect of warning developers who missed
the IIV about the existence of a vulnerability (i.e.,
prompting) on the detection of an IIV?

In particular, we test the following hypothesis:
H02: Prompting does not affect the detection of an IIV

vulnerability during code review.

B. Design Overview

Our study is implemented as an online experiment that can
be reached through a public website. In the following, we
detail our study’s design and how the experiment flows through
each step. Each step corresponds to a different webpage, and
returning to previous pages is not allowed.
(1) Welcome page: On the first page of the experiment,
we provide participants with information about the study.
We introduce ourselves as researchers investigating ways to
improve code review. We do not inform the participants about
the study’s final focus on software vulnerabilities to avoid that
they form an interpretation of the purpose of the study and
subconsciously change their behavior to fit it (i.e., demand
characteristics [31]). We also inform participants about data
handling policy and ask for their consent to use their data.
(2) Code review task: In this step, each participant is asked to
perform a code review of a code change. The code change in-
cludes a method that does not validate the input received from
its external users (i.e., IIV). There are two slightly different
versions (treatments) of this change, and each participant is
randomly assigned to either one:
SQLI: The received input is directly used as part of a SQL

query making the code vulnerable to SQL Injection [32].
The construction of the SQL query is visible in the code,
thus showing a traditional attack scenario.

IVQI: The received input includes an integer amount used
without validating its boundaries, thus making the code
vulnerable to an Improper Validation of Specified Quantity
Input [33]. Particularly, a negative integer value benefits the
users in an unwanted way.

The changed code visible in the review is sufficient to detect
both vulnerabilities and how they can be exploited. Both vul-
nerabilities belong to “Improper Input Validation (IIV)” [34].

In addition to the vulnerability (i.e., either SQLI or IVQI),
we introduce an algorithmic bug (a corner case, CC, bug) in
the code change. We use this bug as a robustness check to an-
alyze participants’ interest in the task. Moreover, immediately

after the code review, we ask the participants whether they
were interrupted during the review and, if so, for how long.

(3) Knowledge and practice regarding vulnerabilities: In
this step, we let the participants know that the study is
about security and provide the definition of software vulner-
ability [35]. We ask questions to gather information about
factors that may affect the participants’ ability to detect the
IIV vulnerability (SQLI or IVQI), such as their security
knowledge, practices, and team culture. Most of the questions
are closed in a Likert scale format (the exact questions are
available in the accompanying material [36]).

(4) Warning about a vulnerability in the change: In this
step, we notify the participants that the change they just
reviewed has a vulnerability. We do not specify the type of
vulnerability to avoid making its discovery too straightforward
since we want to focus on the mindset’s shift.

(5) Code review reconsideration (optional): Participants are
asked to re-inspect the code review unless they think they
already found the vulnerability during the first review (hence
this step is optional). In the end, we ask participants if they
were interrupted during this review and, if so, for how long.

(6) IIV disclosure and inquiry on performance: We show
the type and location of the IIV vulnerability that affects the
change they reviewed and explain how it makes the code
vulnerable. Then, we ask the participants whether they found
the vulnerability. If not, we ask them to explain why they
missed it. If so, we ask in which review they found the
vulnerability: If in the first one, we ask them to explain why
they could catch it, if in the second one, we ask why they
think they could find it only in the second trial. With this
step, we aim to check whether the developers agree with our
’miss/found’ evaluation of the vulnerability and collect rich
qualitative data to triangulate our findings and answer our RQs.

(7) Demographics: Participants are asked to fill in questions
to collect demographic information and confounding factors,
such as gender, highest obtained education, years of experience
(all the questions are available in the accompanying mate-
rial [36]). This information is mandatory to fill in since collect-
ing such data helps us identify which portion of the developer
population is represented by our study participants [37].

(8) Feedback and closing: In the end, we ask the participants
for feedback on the overall study. We also ask participants if
they would like to share their data anonymously in a public
research dataset and receive the study results.



C. Design Implementation

To implement our design, we extend the publicly available
browser-based tool CRExperiment [38]. CRExperiment is de-
signed to conduct online experiments that require participants
to review code changes and answer survey-like questions; it
has been used and validated in previous studies [39], [40].
CRExperiment uses Mergely [41], which is also used by the
popular review tool Gerrit [42], to show code changes in two-
pane diffs. The Graphical User Interface (GUI) has the same
color scheme as Gerrit to facilitate the simulation of a real-
world code review scenario during the experiment. In addition
to the answers we collect through explicit questions and tasks,
CRExperiment also logs user interactions (e.g., mouse clicks
and pressed keys), which we use to ensure that participants
actively perform the tasks. Finally, CRExperiment logs the
time participants spend at each stage of the study. We store all
the collected data on a server anonymously. Finally, to reduce
the risk of data loss and corruption, we store the data in its
raw form (i.e., recorded as logs) for offline analysis.

D. Experimental Objects

The experiment objects are a code change to review and
an IIV vulnerability (either SQLI or IVQI) we injected
in the code change. We also inject a control bug to use
as a robustness check. All the material is available in our
replication package [36].
Code Change. Our requirements for designing the object
code change are: (1) written in Java, one of the most popular
languages [43]; (2) not belonging to any existing code base
to avoid giving some developers an advantage over the others
due to familiarity with code; (3) suitable for the injection of
both vulnerabilities (i.e., SQLI and IVQI); (4) suitable to be
part of an actual software (i.e., not a toy example available on
websites aiming to teach beginners Java programming [44]);
(5) self-contained. After several brainstorming sessions among
the authors, the first version of the patch was implemented.
Based on the feedback we received from the pilot studies
(Section III-E), we iteratively modified the patch. The final
version was discussed and evaluated with two senior software
developers with more than ten years of professional software
development experience with large software companies. This
step led to the last modifications that ensured the change did
not have any implementation or design-related issues other
than the vulnerabilities and the bug. The change implements
a feature to manage employees’ vacations, modifying two
classes and six methods. The change with SQLI has 137 lines
of code, while the change with the IVQI has 145.

Security Vulnerabilities. We introduced SQLI in the code
change for the treatment group in the code review experiment,
whereas we inject IVQI in the code change for the control
group. We select SQLI to test our hypothesis because it
has a stereotyped attack scenario and is presented with a
clear pattern in textbooks [11], [12], and even in popular
culture [13]. We selected IVQI as the vulnerability after
several brainstorming sessions among the authors and a final

/**
 * Get the level for an employee, given their employee ID
 *
 * @param employeeID
 * @return the current level of the specified employee
 * @throws SQLException in case of persistence-related issues 
 *         (e.g., employee not found)
 */
protected int getEmployeeLevel(String employeeID) throws SQLException {

String query = 
           "SELECT * FROM tblemployees WHERE employeeID='" + employeeID + "'";

    ResultSet rs = ConnectionPool.getInstance().executeQuery(query);

if (!rs.next()) throw new SQLException("Failed to fetch employee");

int employeeLevel = rs.getInt("employeeLevel");
rs.close();
return employeeLevel;

}

!!   CWE-89: SQL Injection: Here there is a risk of SQL injection when, for example, an employeeID "‘ or ‘1’=’1"" is used. There 
are 2 conditions in the query. (1) employeeID = ”: It will be evaluated to false as there is no empty employees in the table. (2) 
‘1’=’1′: It will be evaluated to true as this is static string comparison. Now combining all 2 conditions i.e. false or true => Final 
result will be true.

(a) SQL Injection (SQLI)

/**
 * The the cost of the vacation is based on the employee`s level.
 *
 * @param  numOfDaysToBuy  number of vacation days consumed during 
 *         the year
 * @param  employeeLevel current seniority level of the employee
 * @return the holidays to be paid
 */
protected double calculateCostOfVacationDays(int numOfDaysToBuy, 
          int employeeLevel) {
    return numOfDaysToBuy * 
getVacationPriceMultiplier(employeeLevel)
              * 10;

}

!!   CWE-20: Improper Input Validation: The code does not prevent a negative number from being specified for 
numOfDaysToBuy. The calculateDaysBetweenDates method will return a negative number if an attacker were to 
provide a negative number of days to buy, then the employee would be credit instead of debited.

(b) Improper Validation of Specified Quantity Input (IVQI)

Figure 2. Code snippets with the vulnerabilities in our online experiment.

validation with the two aforementioned senior software de-
velopers. Even though both SQLI and IVQI share improper
input validation as their root cause and can be neutralized
with a solution based on the same principle, the latter does
not present a stereotyped attack scenario that can trigger the
reviewer’s attention. Figure 2 shows the SQLI and the IVQI
used in our online experiment.

Control Bug. One of the main reasons developers perform
code review is to detect functional defects [45]. We introduce
a bug in the object patch as a robustness check to analyze
participants’ interest in the task. In other words, if we measure
that most participants who do not find the bug also miss the
vulnerability, the actual cause could be that those participants
do not put enough effort into doing the task and, thus, con-
sidering their data in the analyses would likely lead to biased
results. In such a case, we would only consider participants
who found the bug. We inject a Corner Case (CC) bug, which
is typically checked by developers [40], as also confirmed
by the Google code review guidelines [46] that explicitly
encourage developers to check for this type of bug.

E. Pilot Runs

Once the first version of the online experiment was ready,
we conducted pilot runs to (1) verify the absence of technical
errors in the online platform, (2) check the ratio with which
the participants were able to find the injected vulnerabilities
(regardless of the treatment group), (3) verify the understand-
ability of the instructions, survey questions, as well as the user



interface, (4) improve the code review tool features to ensure
that participants’ code review experience is as close as possible
to an actual one, (5) verify that the code change does not have
any design or implementation issues except for the injected
vulnerabilities (either SQLI or IVQI) and the CC bug, and
(6) gather further qualitative feedback from the participants.

We conducted pilot runs for a total of nine participants.
The participants’ data and qualitative feedback during the pilot
runs were discussed iteratively among the authors every few
pilot runs. We continued with our pilot iterations until the
required changes were minimal. The participants for pilot runs
were recruited through the authors’ professional network to
ensure they would take the task seriously and provide detailed
feedback about their experience. In the final study, we used
no data gathered from any of the participants who took part
in the pilot runs.

F. Variables, Measurement Details and Analyses

Analysis of the First Code Review Outcome (RQ1). To
answer RQ1.2, we build a multiple logistic regression model,
similar to the one used by McIntosh et al. [47]. The binary de-
pendent variable of our model V ulnFound indicates whether
the participant detects the vulnerability during the first review
or not (Table I). To compute the value of V ulnFound, we do
the following: (1) the second author inspects all the remarks
participants made during the code review experiment and
classifies each remark as detection of the vulnerability or not,
then (2) the first author goes through most of the data together
with the second author to discuss the decisions, especially the
cases that the second author marks as unclear. These authors
take the final decision cross-checking their opinion with the
answers participants gave to the corresponding question in
Step 6 (Figure 1).

To ensure that the selected logistic regression model is
appropriate for the data we collect, we (1) reduced the number
of variables by removing those with Spearman’s correlation
higher than 0.5 using the VARCLUS procedure, (2) further
tested for multicollinearity computing the Variance Inflation
Factors (VIF) and removing all values above 7, thus ending
with little or no multicollinearity among the independent
variables, and (3) built the models adding the independent
variables step-by-step and found that the coefficients remained
relatively stable, thus further indicating little interference
among the variables.

The independent variable V ulnType (SQLI or IVQI) is
included in the model to investigate how the visibility of
a traditional attack scenario for an IIV vulnerability affects
its detection. To answer RQ1.2, we also need to consider
the effect of possible confounding factors related to security
knowledge, practice, and team culture on the outcome of the
code review experiment (i.e., V ulnFound). For this reason,
we also include in our model a number of control variables
(Table I). Values for all these variables (except for the ones that
regard the review, such as BugFound and Interruptions)
are collected through the survey questions in Steps 3 and 7
(Figure 1). Details about interruptions (InterruptionsF irst

Table I
VARIABLES USED IN THE LOGISTIC REGRESSION MODELS.

Metric Description
Dependent Variables

VulnFound (RQ1) The participant found the vulnerability in the
first code review

VulnFound2 (RQ2) The participant found the vulnerability during
revisit to the code review
Independent Variables

VulnType Type of the IIV vulnerability in the code
change (SQLI or IVQI)

Control Variables (Review)
BugFound The participant found the functional bug

Interruptions For how long the participant was
interrupted during the review

DurationReview Duration of the code review
Control Variables (Security Knowledge)

Familiarity Familiarity to vulnerab.

Courses The participant has participated in security
courses and/or training

KnowledgeUpdate The participant keeps himself/herself up to
date with security information

Control Variables (Security Practice)

Incidents The participant has experience with security
incidents.

Responsibility The participant looks for vulnerab. as a
part of his/her job responsibility

StaticAnalysis How often the participant found static
analysis tools helpful in finding vulnerabilities

DynamicAnalysis How often the participant found dynamic
analysis tools helpful in finding vulnerabilities

ManualAnalysis How often the participant found manual
analysis helpful in finding vulnerabilities

{Design/Coding/
Reviewing }

The participant actively considers vulnerabilities
when {designing software|coding|reviewing code}

Control Variables (Team Culture)
{ToolUsage |
ThirdPartyLib |
CRusage |
EnoughTime }

The extend to which developers in the team
{use tool to detect vulnerabilities |
check for vulnerabilities in third party libraries |
use code review to detect vulnerabilities |
have time to consider security aspects}

Control Variables (demographics)
Gender Gender of the participant
LevelOfEducation Highest achieved level of education
EmploymentStatus Employment status
Role Role of the participant
OSSDev The experience in OSS development
ReviewPractice How often they perform code review
{ProfDevExp |
JavaExp |ReviewExp |
WebDevExp |
DBDevExp }

Years of experience {as professional
developer | in java | in code review | in web
programming | in database applications}

{DesignFreq |
DevFreq | CRFreq }

How often they {design software | program |
review code}

and InterruptionsNext) are collected from the participants
at the end of the reviews, and the duration of each review is
computed from the experiment’s log.
Analysis of the Review Reconsideration (RQ2). We build
a second multiple logistic regression model to answer RQ2.2.
The independent and control variables of the second model are
the same as those of the first model we build to answer RQ1.2,
whereas the dependent variable is V ulnFound2 (see Table I).
The second model is built using data of participants who did
not find the vulnerability during the code review task in Step
2 (Figure 1). We used the same approach as for the regression
in RQ1 to ensure that the selected model was appropriate.



Analysis of open answers on performance. To analyze
the answers that participants gave to the open questions
when reflecting on the reason for their performance (Step 6,
Figure 1), we used open card sorting [48]. This allowed us to
extract emerging themes reported as affecting the detection of
an IIV vulnerability. From the open-text answers, the second
author created self-contained units, then sorted them into
themes. To ensure the themes’ integrity, the author iteratively
sorted the units several times. After review by the first author
and discussions, we reached the final themes. The discussion
helped us evaluate controversial answers, reduce potential bias
caused by a wrong interpretation of a participant’s comment,
and strengthen the confidence in the card sorting process’s
outcomes. The card sorting supported us in triangulating our
results and form new hypotheses that we challenged with
experimental data (e.g., end of Section IV-B). The card sorting
output is available in our replication package.

G. Recruiting Participants

The online study was spread out through practitioners’ web
forums, IRC communication channels, direct authors’ contacts
from their professional networks, as well as their social media
accounts (e.g., Twitter, Facebook). We did not reveal the actual
aim of the experiment. We also introduced a donation-based
incentive of 5 USD to a charity per participant with a complete
and valid experiment.

IV. RESULTS

In this section, we describe how we validated the set of
participants and report the study results by research question.

A. Valid Participants

A total of 472 people accessed the welcome page of our
study’s web tool through the provided link. Only 194 people
went beyond that page and were considered for the experiment.

From these, we excluded instances in which all study steps
were not completed, or the first code review (Step 2) was
skipped or skimmed (we checked that at least one remark was
entered). We manually analyzed the cases of participants who
spent less than one-third of the interquartile range in their
code review or more than three. Among these, we detected
participants who declared to have not done the task seriously
and who said they were interrupted significantly during the
code review, so their results could not be completely trusted
(from this, we removed 10 participants). After applying the
aforementioned exclusion criteria, we had a total of 146 valid
participants.

In total, 80 valid participants received the code change
with the SQLI, and 66 received an IVQI. We compared the
characteristics of the participants assigned to the two groups
and found no statistically significant difference.

In the open-text gender question, 109 and 7 participants
self-described as males and females, respectively, and 30
participants preferred not to disclose. The majority of the
participants are currently software developers (57%) and re-
ported to have multiple years of experience in professional

Table 1

Software developer 83

Software architect 14

Researcher/
Professor

7

Project manager 3

PhD student 3

IT Operations 2

Penetration tester 1

Bug bounty hunter 1

Other 12

Software developer
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Project manager

PhD student

IT Operations
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Bug bounty hunter
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Figure 3. Job of participants with employment.

software development: 23% have 3-5 years of experience,
32% have 6-10 years, and 18% have more than 11 years.
Most respondents design, program, and review code daily
(61%, 96%, and 64%, respectively). Figure 3 shows the current
positions of participants with part-/full-time employment and
Figure 4 presents the participants’ experience and practice.

B. RQ1. Detecting IIV vulnerabilities during code review

To investigate our first research question, we asked partici-
pants to review a code change containing a vulnerability (either
an SQLI or an IVQI) and a CC bug.

A total of 76 participants found the CC bug during the
first code review, while none of them reported it during the
review reconsideration. Among the participants assigned to
the code containing the SQLI, 39 (49%) found the CC bug.
Among those assigned to the code with the IVQI, 37% (56%)
found the bug. The difference between these groups is not
statistically significant, χ2(1, N = 146) = 0.77, p = 0.379.

Table II
DETECTION OF THE VULNERABILITY IN THE FIRST REVIEW (STEP 2).

IIV SQLI IVQI Total
Found 52 14 66
Not Found 28 52 80

Odds Ratio: 6.90 (3.27,14.57)
p < 0.001

Table II presents the results of the code review task (Step
2 in Figure 1) by vulnerability type (SQLI vs. IVQI). During
this step, a total of 66 participants found the vulnerability
to which they were assigned. Nevertheless, this number is
unbalanced. Out of the 80 participants assigned to SQLI,
65% found the vulnerability during the review task (Step 2,
Figure 1). On the other hand, 66 participants were assigned
to IVQI, and 18% found the IIV in this step. In this review,
45 participants found neither SQLI nor IVQI. Expressed in
odds ratio, these results show how SQLI is seven times more
likely to be found by participants than IVQI (p < 0.001).
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Table III shows the result of the logistic regression model.
This statistical model confirms the result shown in Table II:
Vulnerability type is significant; thus, we can reject H01.

The other statistically significant variables are (i) Coding
(the developer actively considering vulnerabilities when cod-
ing) and (ii) CRFreq (how often they review code in the
last year). All three significant variables have positive estimate
values, which means the higher the values of these variables,
the more likely the vulnerability is found.

Table III
REGRESSION FOR THE FIRST CODE REVIEW (STEP 2).

Estimate S.E. Sig.
Intercept -12.814 3.324 ***
VulnType 2.351 0.574 ***
BugFound 0.325 0.565
Interruptions -0.104 0.244
Familiarity 0.954 1.247
Courses 0.242 0.604
KnowledgeUpdate 0.124 0.404
Incidents -0.164 0.703
Responsibility -0.388 0.323
ManualAnalysis -0.560 0.317
Coding 1.079 0.422 *
Reviewing 0.625 0.437
ThirdPartyLib 0.108 0.266
CRusage -0.372 0.344
Role 0.119 0.119
OSSDev 0.104 0.691
DBDevExp 0.168 0.271
DevFreq 0.374 0.465
CRFreq 0.963 0.418 *
... (†)

Sig. codes: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05
(†) DurationReview, StaticAnalysis, ToolUsage, EnoughTime,

ProfDevExp and JavaExp are not significant and omitted for space reason

By analyzing the answers participants gave on why they
identified the IIV in the first code review, we find recurring

themes. In the case of SQLI, the top-three reported reasons
are: (i) it is a common and easy to notice vulnerability (18
mentions); (ii) participants have experience with this type
of vulnerability (13 mentions); and (iii) participants have
knowledge about it (9 mentions). These results reflect our ex-
pectations: SQLI is a traditional attack scenario and, therefore,
easier to be recognized. Participants also reported possessing
knowledge and previous experience with SQLI: e.g., having
exploited the vulnerability. For instance, a participant reported:
“I know about SQL-injection, and it is still very high on the
OWASP Top 10 list, thus whenever I see an SQL statement,
I consider the possibility of injection;” while another stated:
“This is literally school example of SQL Injection with
hardcoded SQL and concating parameter.” However, SQLI
still frequently happens in practice. For instance, a participant
explained: “SQL Injection issues are among the most common
and glaring issues in code that I review.”

For IVQI, developers reported that they follow review
practices (10 mentions) to detect this issue: e.g., checking
user inputs. A participant reported the following reason: “I
always consider function inputs and outputs, especially if user-
provided.” Moreover, the reasons reported by the participants
show that they do not detect SQLI and IVQI the same
way, while their root cause is the same, which supports our
aforementioned findings.

We challenged these qualitative reasons using data collected
in Steps 3 and 7. We used the variables described in Sec-
tion III-F to map the reasons. All the knowledge variables
(Familiarity, Courses, and KnowledgeUpdate) are corre-
lated with participants finding vulnerabilities of this type. We
used Chi-Square test for the first two and Mann-Whitney U test
for the last and obtained p = 0.03, p = 0.03, and p = 0.01,
respectively. Regarding the participants assigned to IVQI, we



performed Mann-Whitney U test on the practice variables and
only Dynamic was significantly related (p = 0.02).

Finding 1. Developers are seven times more likely to
detect an IIV when a traditional attack scenario is
visible (SQLI) than when it is not (IVQI). Other con-
tributing factors are related to knowledge and practice.

C. RQ2. Detecting IIV after being warned

To investigate the second research question, we warned
the participants about a vulnerability in the code change and
invited them to reconsider their review (Step 5 in Figure 1)
if they had not found it yet. In this step, no participant found
the CC bug. Table IV presents the results for the reconsid-
ered review. In total, 20 additional participants identified the
vulnerability to which they were assigned.

We performed a McNemar’s test to investigate the effect
of warning the participants about a vulnerability in the code
change. We considered the code review experiment output for
the test. As output, we found that the probability of success is
0.25 with a p = 2.152e−05; considering both SQLI and IVQI,
the probabilities of success for SQLI and IVQI are 0.46 and
0.13 with p < 0.001 and p = 0.02, respectively. Therefore,
we can reject H02. Prompting affects the detection of IIV.

In total, 13 participants found the SQLI. This means that
46% of the participants who did not find this vulnerability in
the first code review found it after the warning. Moreover, 7
participants found the IVQI. When expressed in odds, these
results show that—when the developers are informed about
the existence of a vulnerability in the code (i.e., prompted)—
the SQLI vulnerability is six times more likely (p < 0.001,
Table IV) to be found than IVQI. This result is in-line with
that of our first research question, where we also identified
that developers are more likely to detect SQLI.

Table IV
ODDS RATIO FOR DETECTING THE VULNERABILITY IN THE REVIEW

RECONSIDERATION (STEP 5).

IIV SQLI IVQI Total
Found 13 7 20
Not Found 15 45 60

Odds Ratio: 5.57 (1.88,16.55)
p < 0.001

In Table V, we show the result of our second logistic
regression model. We built the model taking into account
only the data of the participants who missed the vulnerability
during the first code review. The starting variables used for
this statistical model are the same as those used for the
first one (see Section III-F), but the final ones differ due
to multicollinearity analysis. This model confirms the result
shown in Table IV: the vulnerability type significantly affects
on its detection during the review reconsideration.

Regarding SQLI, participants reported that they found the
vulnerability in the review reconsideration for the following

Table V
REGRESSION FOR THE RECONSIDERED REVIEW (STEP 5).

Estimate S.E. Sig.
Intercept -15.261 7.427 *
VulnType 5.584 1.770 **
BugFound 1.164 1.330
DurationRevisit 0.100 0.062
Interruptions -0.409 0.614
Familiarity 1.934 1.905
Incidents -0.186 1.572
Courses -0.477 1.476
KnowledgeUpdate 1.319 0.764
Responsibility -0.690 0.624
Coding 0.633 0.746
Reviewing 0.735 0.997
ManualAnalysis -0.305 0.579
ToolUsage -0.144 0.637
CRusage 0.355 0.636
ThirdPartyLib 0.274 0.508
EnoughTime -0.553 0.540
OSSDev 0.485 1.569
ProfDevExp 0.272 0.482
JavaExp 0.482 0.640
DevFreq 0.742 0.806
CRFreq -0.648 0.606
... (†)
Sig. codes: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05

(†) StaticAnalysis is not significant and omitted for space reason

reasons: (i) they needed to be reminded to focus on security
(13 mentions) or (ii) they lacked the confidence (3 mentions).
Some participants reported more than a reason in their answer.
The first reason is related as participants needed to pay
more attention to the security aspect of the code to identify
vulnerabilities; as one participant put it: “At first I was looking
mainly for good programming practices and didn’t really mind
for other issues.” The last reason refers to participants who
found the vulnerability in the first code review, but were
initially not confident if it was indeed an issue; later, the
warning clarified their doubt.

Regarding the participants assigned to IVQI, they reported
similar reasons: (i) they were looking for non-vulnerability
defects (3 mentions) or (ii) they needed to be warned about
vulnerabilities (2 mentions). Similar to participants assigned to
SQLI, these reported focusing on security when they missed
the vulnerability in the first code review and needed to be
reminded about security issues to start to look for them (e.g.,
“... in the second review I was actively looking for security
flaws. In the first review I was more inclined to look for code
correctness”). We see that most participants may know how
to identify the SQLI correctly and some to detect the IVQI,
but they tend not to focus on security during a review.

We challenged the reported reasons using data collected in
Steps 3 and 7. For the SQLI, we related the participants’
reasons with variables from knowledge and practice (see
Section III-F). We considered the participants that missed the
vulnerability in the first code review (i.e., they found it in the
review reconsideration or completely missed it). We found
no significance for neither the knowledge nor the practice
variable categories using Chi-Square and Mann-Whitney U
tests.



Finding 2. Prompting has an effect on the detection
of IIV and most reviewers can detect SQLI. Yet, a
substantial amount of them cannot detect IVQI even
after warned of the existence of a vulnerability.

A total of 60 participants (41%) missed the vulnerability
we introduced in the code change. Respectively, 45 and 15
participants did not detect IVQI and SQLI.

Regarding SQLI, developers reported that they missed
this vulnerability even after being prompted because they:
(i) lacked knowledge or experience (7 mentions), (ii) over-
looked the details (2 mentions), or (iii) reviewed different
aspects of the code (2 mentions). Although SQLI is well-
known, some participants still did not know it. For example,
a participant reported: “I didn’t know that this was a vulner-
ability.” They also reported to be looking for other details in
the code (e.g., “I did not think of the database operation in a
detailed way, a mistake of mine.”). These results highlight the
need for better security training, even for basic vulnerabilities,
and for improving the development process, so security is also
considered, especially during code review.

Regarding IVQI, developers reported that they missed this
vulnerability because they: (i) lacked attention (10 mentions),
(ii) focused on different aspects of the code (9 mentions),
(iii) thought that the CC bug was the vulnerability (8 men-
tions), and (iv) lacked knowledge or experience (6 mentions).
The reported reasons support developers’ belief in their lack
of knowledge or experience to detect these vulnerabilities (13
mentions in total), which is in accordance with what SSEs
claim [5]. This reason may be more frequent if we consider
“found a different problem” as lack of security knowledge as
the developers who reported this reason found the algorithmic
bug instead of a security issue.

We challenged these reasons using the data collected in
Steps 3 and 7 (in Figure 1). For the SQLI, we investigated
the knowledge and practice variables categories (seeSec-
tion III-F), and found that the following variables are sig-
nificant: KnowledgeUpdate (p = 0.01), ManualAnalysis
(p = 0.49), CodeReviewing (p = 0.01), Coding (p = 0.01),
and Design (p = 0.02). Regarding the IVQI, we also inves-
tigated the knowledge and practice variables categories. We
found that most variables are statistically significant. The not
significant ones are: Familiarity, Incidents, and Practice.
Our results indicate that both knowledge and practice may
be the cause of missing vulnerabilities.

Finding 3. Most factors related to low knowledge
and practice contribute to missing IIV vulnerabilities
during code review, even after prompting.

D. Robustness Testing

To challenge the validity of our findings, we employ ro-
bustness testing [49]. For this purpose, we test whether the

results we obtained by our baseline model hold when we
systematically replace the baseline model specification with
the following plausible alternatives.

The functional defect distracted the participants. A sig-
nificant number of participants reported that they missed the
vulnerability because they searched or found other defects.
To verify this claim, we checked the correlation between
finding the algorithmic bug and finding the vulnerability.
We performed a Chi-square test considering all participants,
only participants assigned to SQLI, and only participants
assigned to IVQI. Our analysis did not achieve a statistically
significant value for all three cases. Therefore, we do not have
enough evidence to suggest a relationship between finding the
algorithmic bug and the vulnerability.

Vulnerabilities were too easy or too hard to find. Choosing
the right vulnerability to inject in the code change is funda-
mental to the validity of our results. If a vulnerability is too
easy to find, participants might find the issue regardless of any
other influencing factor, even without paying too much atten-
tion to the review (on the other hand, if it is too complicated,
reviewers might not find any vulnerability and get discouraged
to continue). On the one hand, in our study, we aimed to
evaluate whether developers can identify a standard textbook
vulnerability (SQLI). Therefore, we expected this vulnerabil-
ity to be easy-to-catch. In fact, 81% of the participants found
it. On the other hand, IVQI is a simple vulnerability to find
and fix, but not so recognizable. We measure that 40% of the
participants found this kind of vulnerability, thus ruling out
the possibility that this vulnerability was either too trivial or
too difficult to find.

Number of participants. We performed a preliminary power
analysis using the software package G?Power [50] to calculate
the minimum sample size (i.e., number of participants with
valid responses) for our study. Our prior analysis revealed that
we need a minimum sample size of 143 by using Two-tail test
with odds ratio = 1.5, α = 0.05, Power = 1 − β = 0.95,
and R2 = 0.3. We used a manual distribution. As our number
of participants (146) is bigger than necessary, we believe that
they are representative. However, this sample size is valid only
for the first logistic regression model that we built to answer
the research question RQ1.2. To build the second logistic
regression model for the review revisit analysis, we exclude
the participants that already found the vulnerability in the code
review experiment. Therefore, for this analysis, we reduced
our participants’ number to 80. Even though this number is
quite large in comparison to many experiments in software
engineering [51], it could have affected the significativity of
the multivariate statistics; for this reason, we also conducted
other statistical tests to verify the effect of single variables on
the expected outcome and reported the results.

V. THREATS TO VALIDITY

Construct Validity. The code changes we used in our study
are a threat to construct validity. For mitigation purposes, the
first and last authors prepared code changes and injected the



vulnerabilities and the corner case bug. The other authors later
checked the produced code. To ensure that participants saw
the complete code change, the online platform showed all
code on the same page on reasonably sized screens; moreover,
participants had to scroll down to proceed to the experiment’s
next page.

A major threat is that online experiments could differ from
a real-world scenario. We mitigated this issue by (1) re-
creating a code change as close as possible to a real one (e.g.,
submitting documentation together with the production code),
(2) using an interface that is identical to the popular Code
Review tool Gerrit [42], (3) injecting vulnerabilities that are
based on the examples in the CWE description of both types
(SQLI and IVQI), and (4) getting the code change validated
by two professional software developers.

To mitigate mono-operation bias [52], we used more than
one variable to measure each construct (e.g., security knowl-
edge, practice). Each of these variables (see Table I) corre-
spond to a question in the survey on vulnerabilities (Step 3
in Figure 1). To mitigate mono-method bias [52], we used
different measurement techniques: We obtained qualitative
results by employing card sorting on participants’ feedback
about why they missed or found the IIV vulnerability during
the code review task (Step 2, Figure 1) and code review
reconsideration (Step 5). We triangulated these qualitative
findings with statistical analyses of variables that we obtained
through participants’ answers to questions in the survey on
vulnerabilities. Finally, to mitigate the interaction of different
treatments [52], we applied each treatment separately as fol-
lows: (1) Participants were randomly assigned to one of the
treatments: SQLI or IVQI. We analyzed only the responses
participants gave for the code review task (Steps 2) to test the
hypothesis H01 (i.e., the effect of the visibility of an attack
scenario for an IIV vulnerability on its detection). (2) To test
the hypothesis H02 (i.e., the effect of informing participants
about the existence of a vulnerability on the detection of IIV
vulnerability), we analyzed responses that participants who
missed IIV vulnerability during the code review task gave
for the code review reconsideration.

Internal Validity. We reviewed each participation log to iden-
tify participants who did not take the experiment seriously. We
removed participants who took less than five minutes to com-
plete the experiment or did not complete it. We also introduced
a CC bug as a control in the code change for both treatments
(SQLI and IVQI), as explained in Section III-D. We also
checked whether the control bug distracted the participants
from finding the vulnerability by conducting a Chi-square Test
of Independence for all participants, only participants assigned
to SQLI, and only participants assigned to IVQI—we did not
achieve any significant statistical outcome.

As our experiment was online, we cannot ensure that all
participants completed it with the same setup (e.g., monitor
resolution) and similar environments (e.g., noise level, inter-
ruptions). However, developers in real life also work with
different tools in various environments. To mitigate the threats

that interruptions might pose to the validity of our study, we
asked participants to inform us about durations of interruptions
during the code review task and code review reconsideration
(Steps 2 and 5 in Figure 1) if there were any. We included these
interruptions’ durations in our statistical analyses. In addition,
several background factors (e.g., age, gender, experience,
education) may impact the results. Hence, we collected all
such information and investigated how these factors affect
the results by conducting statistical tests. Furthermore, we
designed our experiment as a within-subject study to reduce
random noise due to participants’ differences and to obtain
significant results with fewer participants [53], [54].
External Validity. We invited developers from several coun-
tries, organizations, education levels, and backgrounds. Nev-
ertheless, our sample is certainly not representative of all
developers. Thus, further studies are needed to establish the
generalizability of our results.

A replication with different vulnerabilities could lead to
similar observations as long as they have a similarly popular
attack scenario because its effect was clear-cut.

Our observations might not hold when developers review
changes to the software projects they work on as a part of their
daily practices since higher stakes increase attentiveness [55].
However, some participants mentioned that they never consider
vulnerabilities.

Moreover, our results may not be the same if large change-
sets or changes that address more than one issue are used in
the code review experiment: These are more difficult to review
as they increase the reviewer’s cognitive load [51]. Therefore,
further studies are necessary to assess the generalizability of
our results in these scenarios.

VI. DISCUSSION

In this section, we first present themes that emerged as
relevant in our study, then provide a high-level overview of
the main contributions of our work to research and practice.

A. Emerging Themes

Lack of security knowledge. Software vulnerabilities, such
as IIV, may have a strong negative impact on software
systems, possibly reaching users and even their personal lives.
Therefore it seems reasonable to think that developers have the
knowledge, training, and practice to make sure vulnerabilities
do not reach production systems. However, security experts
believe that less than half of developers can actually detect
vulnerabilities [5]. Previous studies [9], [10] reported that de-
velopers’ intention to practice secure coding, general security
knowledge, and awareness is the cause of vulnerabilities.

We found that the existence of a visible attack scenario fa-
cilitates the detection of IIV. Developers struggle to recognize
vulnerabilities when such a scenario is not available. Indeed,
participants were seven times more likely to find SQLI than
IVQI since there is no popular example of IVQI in practice.
Furthermore, many participants reported the lack of knowledge
and practice as one of the main reasons for not identifying the
vulnerability.



In-line with previous findings [5], [10], our results suggest
the need to improve developers’ security knowledge, but they
also call for creating different educational approaches. As
attack scenarios seem to be more memorable than generic
indications on what should be checked and how, educators may
focus more on practical scenarios when teaching security. How
to design memorable yet effective and recognizable scenarios
is an open research question whose answer can have important
practical implications.

Security is not developers’ prime concern. Developers
reported focusing on other kinds of defects and aspects of the
code (e.g., code quality) as one of the main reasons for not
identifying the vulnerability. Indeed, our findings highlighted
that prompting developers in searching for a security issue
had a significant effect on vulnerability detection. Security
awareness during code development and the frequency de-
velopers perform code review also play a role in it. In line
with previous work [9], these results raise questions on the
effectiveness of the current development process, including
coding and reviewing activities. To create a different approach,
one may consider incorporating explicit security aspects in
development activities, such as checklists for code review.
The use of code checklists to support developers has been
the object of extensive investigation [56], [57]. Studies can be
designed and carried out to determine how to develop security-
oriented checklists that do not overburden the reviewers, yet
are effective.

Practice makes perfect – with a mentor. Participants re-
ported how their experience with security issues (or lack
thereof) played a key role in detecting (or missing) the IIV
in the experiment. This raises the question: how can inex-
perienced developers be trained to find security issues? Our
hypothesis is that code review might serve this purpose well.
In fact, previous studies [45], [58], [59] reported how practical
knowledge transfer is one of the main outcomes of the
code review process. Therefore, through code review, junior
developers can be guided by a more experienced developer
in identifying vulnerabilities in the project code-base, with
the benefit of having clear real-world examples and scenarios.
Software projects can consider how to integrate this into their
code review process and practices.

B. Contributions to Research and Practice

Overall, our work fits into the context of a type II [60]
middle-range theory [61] as we focused on showing how
and why software developers can(not) detect improper input
validation vulnerabilities.

In this context, the outcomes of our study contribute with the
following main points to secure software engineering research
and practice:

• Our study contributes to cognitive theories of programmer
errors [62], [63] and debugging [64], as well as inspection
process models [65], by providing evidence on the role
of explicit attack scenarios, practical knowledge and
mindset, and prompting.

• Our findings motivate the need for educational research
that facilitates the design and implementation of security
training for developers by employing authentic [66] and
experiential learning [67] techniques. For instance, our
study highlights the importance of concrete attack sce-
narios, suggesting that vulnerabilities with not so popular
scenarios should be further explored in security training.

• The observed effect of security warnings indicates how
code review can be a fertile ground to use vulnera-
bility detectors. Interdisciplinary investigations involving
security as well as HCI (Human Computer Interaction)
researchers can be conducted with the aim of devising
ways to provide this information effectively.

• Our study supports that software professionals, particu-
larly developers, should integrate a security-aware atti-
tude into their practices (rather than delegating [10]) to
gain the required skills while working on their code-base
and avoid overlooking even simple vulnerabilities, such
as IVQI.

VII. CONCLUSIONS

In the study we presented in this paper, we investigated to
what extent developers can(not) detect Improper Input Valida-
tion vulnerabilities (IIV) and the underlying reasons. To this
aim, we designed and conducted an online study that had 146
valid participants. These participants were assigned to changes
with one of the following two IIV types: SQL Injection
(SQLI) and Improper Validation of Specified Quantity Input
(IVQI). The former vulnerability presents a visible, popular
attack scenario.

Overall, 45% of the participants found the vulnerability.
Developers were seven times more likely to detect the SQLI,
thus confirming the role of the visible attack scenario. After
warning the participants of the existence of a vulnerability
in the code they just reviewed, an additional 14% of the
respondents able to find the vulnerability they missed. Among
the 41% of the participants who could not identify the IIV at
all, 91% were assigned to IVQI.

Importantly, these results indicate a lack of knowledge
and practice to identify vulnerabilities among the participants,
especially when an attack scenario is not visible. The effect
of the security warning provides evidence that a significant
portion of developers does not focus on security by default,
even during code review, but could be triggered to do so with
proper team policies or adequate tooling support.
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